Comparison of Kinematics and Contact Mechanics in Normal Knee and Total Knee Replacements: A Computational Investigation


An objective of total knee replacement (TKR) is to restore the mechanical function of a normal knee. Joint kinematics and contact mechanics performance are two of the primary indices that indicate the success of TKR devices. The aim of this study was to compare the kinematics and contact mechanics of TKR and normal knee joints. An experimentally evaluated finite-element (FE) knee model was developed and used to investigate the performance of four TKR designs (fixed cruciate-retaining (CR), mobile CR, posterior-stabilized (PS), medial pivot design (MP)) and the normal knee joint during a gait cycle. The predicted kinematic results showed that the MP design presented similar kinematics to those of the normal knee joint and did not demonstrate paradoxical motion of the femur. A considerably larger contact area and lower contact pressure were found on the normal knee joint (1315 mm2, and 14.8 MPa, respectively) than on the TKRs, which was consistent with the previous in-vivo fluoroscopic investigation. The mobile CR and PS designs exhibited the smallest and greatest contact pressures of the four TKR designs, respectively. The results of the present study help to understand the kinematics and contact mechanics in the TKR during the gait cycle, and provide comprehensive information about the performance of the normal knee joint.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    Abdelgaied, A., C. L. Brockett, F. Liu, L. M. Jennings, Z. Jin, and J. Fisher. The effect of insert conformity and material on total knee replacement wear. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 228:98–106, 2014.

    Article  Google Scholar 

  2. 2.

    Abdelgaied, A., J. Fisher, and L. M. Jennings. A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements. J. Mech. Behav. Biomed. Mater. 78:282–291, 2018.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Abdelgaied, A., F. Liu, C. Brockett, L. Jennings, J. Fisher, and Z. Jin. Computational wear prediction of artificial knee joints based on a new wear law and formulation. J. Biomech. 44:1108–1116, 2011.

    PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Archard, J. F., and W. Hirst. The wear of metals under unlubricated conditions. Proc. R. Soc. A Math. Phys. Eng. Sci. 236:397–410, 1956.

    Google Scholar 

  5. 5.

    Ardestani, M. M., M. Moazen, E. Maniei, and Z. Jin. Posterior stabilized versus cruciate retaining total knee arthroplasty designs: conformity affects the performance reliability of the design over the patient population. Med. Eng. Phys. 37:350–360, 2015.

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Baldwin, M. A., C. W. Clary, C. K. Fitzpatrick, J. S. Deacy, L. P. Maletsky, and P. J. Rullkoetter. Dynamic finite element knee simulation for evaluation of knee replacement mechanics. J. Biomech. 45:474–483, 2012.

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Baldwin, M. A., C. Clary, L. P. Maletsky, and P. J. Rullkoetter. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend. J. Biomech. 42:2341–2348, 2009.

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Bergmann, G., A. Bender, F. Graichen, J. Dymke, A. Rohlmann, A. Trepczynski, M. O. Heller, and I. Kutzner. Standardized loads acting in knee implants. PLoS ONE 9:2014.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. 9.

    Blaha, J. D. The rationale for a total knee implant that confers anteroposterior stability throughout range of motion. J. Arthroplast. 19:22–26, 2004.

    Article  Google Scholar 

  10. 10.

    Blankevoort, L., R. Huiskes, and A. de Lange. Recruitment of knee joint ligaments. J. Biomech. Eng. 113:94, 1991.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Bowman, K. F., and J. K. Sekiya. Anatomy and biomechanics of the posterior cruciate ligament, medial and lateral sides of the knee. Sports Med. Arthrosc. 18:222–229, 2010.

    PubMed  Article  Google Scholar 

  12. 12.

    Cates, H. E., R. D. Komistek, M. R. Mahfouz, M. A. Schmidt, and M. Anderle. In vivo comparison of knee kinematics for subjects having either a posterior stabilized or cruciate retaining high-flexion total knee arthroplasty. J. Arthroplast. 23:1057–1067, 2008.

    Article  Google Scholar 

  13. 13.

    Clarke, H. D., K. R. Math, and G. R. Scuderi. Polyethylene post failure in posterior stabilized total knee arthroplasty. J. Arthroplast. 19:652–657, 2004.

    Article  Google Scholar 

  14. 14.

    Courtney, P. M., and G. C. Lee. Early outcomes of kinematic alignment in primary total knee arthroplasty: a meta-analysis of the literature. J. Arthroplast. 32:2028–2032, 2017.

    Article  Google Scholar 

  15. 15.

    de Beer, J., D. Petruccelli, A. Adili, L. Piccirillo, D. Wismer, and M. Winemaker. Patient perspective survey of total hip vs total knee arthroplasty surgery. J. Arthroplast. 27:865–869, 2012.

    Article  Google Scholar 

  16. 16.

    Erdemir, A. Open knee: a pathway to community driven modeling and simulation in joint biomechanics. J. Med. Device 7:040910, 2013.

    Article  Google Scholar 

  17. 17.

    Erdemir, A. Open knee: open source modeling and simulation in knee biomechanics. J. Knee Surg. 29:107–116, 2015.

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Fan, C. Y., J. T. S. Hsieh, M. S. Hsieh, Y. C. Shih, and C. H. Lee. Primitive results after medial-pivot knee arthroplasties. A minimum 5-year follow-up study. J. Arthroplast. 25:492–496, 2010.

    Article  Google Scholar 

  19. 19.

    Fitzpatrick, C. K., C. Maag, C. W. Clary, A. Metcalfe, J. Langhorn, and P. J. Rullkoetter. Validation of a new computational 6-DOF knee simulator during dynamic activities. J. Biomech. 49:3177–3184, 2016.

    PubMed  Article  Google Scholar 

  20. 20.

    Fregly, B. J., T. F. Besier, D. G. Lloyd, S. L. Delp, S. A. Banks, M. G. Pandy, and D. D. D’Lima. Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30:503–513, 2012.

    PubMed  Article  Google Scholar 

  21. 21.

    Fregly, B. J., W. G. Sawyer, M. K. Harman, and S. A. Banks. Computational wear prediction of a total knee replacement from in vivo kinematics. J. Biomech. 38:305–314, 2005.

    PubMed  Article  Google Scholar 

  22. 22.

    Gray, H. A., S. Guan, L. T. Thomeer, A. G. Schache, R. de Steiger, and M. G. Pandy. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane X-ray imaging. J. Orthop. Res. 37:615–630, 2019.

    PubMed  Article  Google Scholar 

  23. 23.

    Gray, H. A., S. Guan, T. J. Young, M. M. Dowsey, P. F. Choong, and M. G. Pandy. Comparison of posterior-stabilized, cruciate-retaining, and medial-stabilized knee implant motion during gait. J. Orthop. Res. 2020.

    Article  PubMed  Google Scholar 

  24. 24.

    Griffith, C. J., C. A. Wijdicks, R. F. LaPrade, B. M. Armitage, S. Johansen, and L. Engebretsen. Force measurements on the posterior oblique ligament and superficial medial collateral ligament proximal and distal divisions to applied loads. Am. J. Sports Med. 37:140–148, 2009.

    PubMed  Article  Google Scholar 

  25. 25.

    Halonen, K. S., M. E. Mononen, J. S. Jurvelin, J. Töyräs, and R. K. Korhonen. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage-A 3D finite element study of stresses and strains in human knee joint. J. Biomech. 46:1184–1192, 2013.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Halonen, K. S., M. E. Mononen, J. S. Jurvelin, J. Töyräs, J. Salo, and R. K. Korhonen. Deformation of articular cartilage during static loading of a knee joint—experimental and finite element analysis. J. Biomech. 47:2467–2474, 2014.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Harris, M. D., A. J. Cyr, A. A. Ali, C. K. Fitzpatrick, P. J. Rullkoetter, L. P. Maletsky, and K. B. Shelburne. A combined experimental and computational approach to subject-specific analysis of knee joint laxity. J. Biomech. Eng. 138:1–8, 2016.

    Article  Google Scholar 

  28. 28.

    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61:1–48, 2000.

    Article  Google Scholar 

  29. 29.

    Horiuchi, H., S. Akizuki, T. Tomita, K. Sugamoto, T. Yamazaki, and N. Shimizu. In vivo kinematic analysis of cruciate-retaining total knee arthroplasty during weight-bearing and non-weight-bearing deep knee bending. J. Arthroplast. 27:1196–1202, 2012.

    Article  Google Scholar 

  30. 30.

    Jones, G. B. Arthroplasty of the knee by the Walldius prosthesis. J. Bone Joint Surg. Br. 50:505–510, 1968.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Khasian, M., B. A. Meccia, M. T. LaCour, and R. D. Komistek. Effects of the medial plateau bearing insert conformity on mid-flexion paradoxical motion in a posterior-stabilized total knee arthroplasty design. J. Arthroplast. 2021.

    Article  Google Scholar 

  32. 32.

    Kim, Y.-H., J.-W. Park, and J.-S. Kim. Clinical outcome of medial pivot compared with press-fit condylar sigma cruciate-retaining mobile-bearing total knee arthroplasty. J. Arthroplast. 32:3016–3023, 2017.

    Article  Google Scholar 

  33. 33.

    Knight, L. A., S. Pal, J. C. Coleman, F. Bronson, H. Haider, D. L. Levine, M. Taylor, and P. J. Rullkoetter. Comparison of long-term numerical and experimental total knee replacement wear during simulated gait loading. J. Biomech. 40:1550–1558, 2007.

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Kozanek, M., A. Hosseini, F. Liu, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J. Biomech. 42:1877–1884, 2009.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Kusayama, T., C. D. Harner, G. J. Carlin, J. W. Xerogeanes, and B. A. Smith. Anatomical and biomechanical characteristics of human meniscofemoral ligaments. Knee Surg. Sport. Traumatol. Arthrosc. 2:234–237, 1994.

    CAS  Article  Google Scholar 

  36. 36.

    LaPrade, R. F., A. Tso, and F. A. Wentorf. Force measurements on the fibular collateral ligament, popliteofibular ligament, and popliteus tendon to applied loads. Am. J. Sports Med. 32:1695–1701, 2004.

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Li, G., M. Kozanek, A. Hosseini, F. Liu, S. K. Van De Velde, and H. E. Rubash. New fluoroscopic imaging technique for investigation of 6DOF knee kinematics during treadmill gait. J. Orthop. Surg. Res. 4:1–5, 2009.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Liu, F., M. Kozanek, A. Hosseini, S. K. Van de Velde, T. J. Gill, H. E. Rubash, and G. Li. In vivo tibiofemoral cartilage deformation during the stance phase of gait. J. Biomech. 43:658–665, 2010.

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Mauerhan, D. R. Fracture of the polyethylene tibial post in a posterior cruciate-substituting total knee arthroplasty mimicking patellar clunk syndrome a report of 5 cases. J. Arthroplast. 18:942–945, 2003.

    Article  Google Scholar 

  40. 40.

    Meneghini, R. M., M. D. Stefl, W. A. Hodge, and S. A. Banks. A cam-post mechanism is no longer necessary in modern primary total knee arthroplasty. J. Knee Surg. 32:710–713, 2019.

    PubMed  Article  Google Scholar 

  41. 41.

    Naghibi Beidokhti, H., D. Janssen, S. van de Groes, J. Hazrati, T. Van den Boogaard, and N. Verdonschot. The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint. J. Biomech. 65:1–11, 2017.

    PubMed  Article  Google Scholar 

  42. 42.

    Navacchia, A., P. J. Rullkoetter, P. Schutz, R. B. List, C. K. Fitzpatrick, and K. B. Shelburne. Subject-specific modeling of muscle force and knee contact in total knee arthroplasty. J. Orthop. Res. 34:1576–1587, 2016.

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    O’Brien, S., Y. Luo, C. Wu, M. Petrak, E. Bohm, and J. M. Brandt. Computational development of a polyethylene wear model for the articular and backside surfaces in modular total knee replacements. Tribol. Int. 59:284–291, 2013.

    Article  CAS  Google Scholar 

  44. 44.

    Pabinger, C., A. Berghold, N. Boehler, and G. Labek. Revision rates after knee replacement: cumulative results from worldwide clinical studies versus joint registers. Osteoarthr. Cartil. 21:263–268, 2013.

    CAS  Article  Google Scholar 

  45. 45.

    Reinders, J., R. Sonntag, and J. P. Kretzer. Wear behavior of an unstable knee: stabilization via implant design? Biomed. Res. Int. 2014:2014.

    PubMed  Article  Google Scholar 

  46. 46.

    Sabatini, L., S. Risitano, G. Parisi, F. Tosto, P. F. Indelli, F. Atzori, and A. Massè. Medial pivot in total knee arthroplasty: literature review and our first experience. Clin. Med. Insights Arthr. Musculoskelet. Disord. 2018.

    Article  Google Scholar 

  47. 47.

    Sathasivam, S., P. S. Walker, P. A. Campbell, and K. Rayner. The effect of contact area on wear in relation to fixed bearing and mobile bearing knee replacements. J. Biomed. Mater. Res. 58:282–290, 2001.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Shahzad, M., A. Kamran, M. Z. Siddiqui, and M. Farhan. Mechanical characterization and FE modelling of a hyperelastic material. Mater. Res. 18:918–924, 2015.

    CAS  Article  Google Scholar 

  49. 49.

    Shu, L., S. Hashimoto, and N. Sugita. Enhanced in-silico polyethylene wear simulation of total knee replacement during daily activities. Ann. Biomed. Eng. 2020.

    Article  PubMed  Google Scholar 

  50. 50.

    Shu, L., S. Li, and N. Sugita. Systematic review of computational modelling for biomechanics analysis of total knee replacement. Biosurf. Biotribol. 6:3–11, 2020.

    Article  Google Scholar 

  51. 51.

    Shu, L., K. Yamamoto, S. Kai, J. Inagaki, and N. Sugita. Symmetrical cruciate-retaining versus medial pivot prostheses: the effect of intercondylar sagittal conformity on knee kinematics and contact mechanics. Comput. Biol. Med. 108:101–110, 2019.

    PubMed  Article  Google Scholar 

  52. 52.

    Shu, L., K. Yamamoto, J. Yao, P. Saraswat, Y. Liu, M. Mitsuishi, and N. Sugita. A subject-specific finite element musculoskeletal framework for mechanics analysis of a total knee replacement. J. Biomech. 77:146–154, 2018.

    PubMed  Article  Google Scholar 

  53. 53.

    Shu, L., J. Yao, K. Yamamoto, T. Sato, and N. Sugita. In vivo kinematical validated knee model for preclinical testing of total knee replacement. Comput. Biol. Med. 2021.; (In press).

    Article  PubMed  Google Scholar 

  54. 54.

    Stäubli, H. U., L. Schatzmann, P. Brunner, L. Rincón, and L. P. Nolte. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults. Am. J. Sports Med. 27:27–34, 1999.

    PubMed  Article  Google Scholar 

  55. 55.

    Tissakht, M., and A. M. Ahmed. Tensile stress-strain characteristics of the human meniscal material. J. Biomech. 28:411–422, 1995.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Tozzi, S., E. Modena, S. Falcioni, A. Sudanese, S. Affatato, and P. Taddei. The effects of contact area and applied load on the morphology of in vitro worn ultra-high molecular weight knee prostheses: a micro-Raman and gravimetric study. J. Raman Spectrosc. 45:781–787, 2014.

    CAS  Article  Google Scholar 

  57. 57.

    Von Keudell, A., S. Sodha, J. Collins, T. Minas, W. Fitz, and A. H. Gomoll. Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis. Knee 21:180–184, 2014.

    Article  Google Scholar 

  58. 58.

    Watanabe, T., H. Koga, M. Horie, H. Katagiri, I. Sekiya, and T. Muneta. Post-cam design and contact stress on tibial posts in posterior-stabilized total knee prostheses: comparison between a rounded and a squared design. J. Arthroplast. 2017.

    Article  Google Scholar 

  59. 59.

    Zeller, I. M., A. Sharma, W. B. Kurtz, M. R. Anderle, and R. D. Komistek. Customized versus patient-sized cruciate-retaining total knee arthroplasty: an in vivo kinematics study using mobile fluoroscopy. J. Arthroplast. 32:1344–1350, 2017.

    Article  Google Scholar 

  60. 60.

    Zhang, J., Z. Chen, L. Wang, D. Li, and Z. Jin. A patient-specific wear prediction framework for an artificial knee joint with coupled musculoskeletal multibody-dynamics and finite element analysis. Tribol. Int. 109:382–389, 2017.

    Article  Google Scholar 

Download references


We would like to thank the Mr. Junichi Inagaki and Dr. Shin Kai for providing implant models for this study. The authors also thank Prof. Zhongmin Jin from Southwest Jiaotong University for advice and discussion on the knee modeling.

Competing interests

All authors declare that they have no conflict of interest.


This research was supported by JSPS KAKENHI, Grant Number 20K20162.

Author information



Corresponding authors

Correspondence to Liming Shu or Takashi Sato.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Stefan M. Duma oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shu, L., Sato, T., Hua, X. et al. Comparison of Kinematics and Contact Mechanics in Normal Knee and Total Knee Replacements: A Computational Investigation. Ann Biomed Eng (2021).

Download citation


  • Knee
  • Kinematics
  • Contact mechanics
  • Finite element analysis
  • Total knee replacement