Skip to main content
Log in

A Mesoscale Computational Model for Microvascular Oxygen Transfer

  • Virtual Physiological Human
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We address a mathematical model for oxygen transfer in the microcirculation. The model includes blood flow and hematocrit transport coupled with the interstitial flow, oxygen transport in the blood and the tissue, including capillary-tissue exchange effects. Moreover, the model is suited to handle arbitrarily complex vascular geometries. The purpose of this study is the validation of the model with respect to classical solutions and the further demonstration of its adequacy to describe the heterogeneity of oxygenation in the tissue microenvironment. Finally, we discuss the importance of these effects in the treatment of cancer using radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Alper, T. and P. Howard-Flanders. Role of oxygen in modifying the radiosensitivity of E. coli B. Nature 178(4540):978–979, 1956.

    Article  CAS  Google Scholar 

  2. Cao, X., S. R. Allu, S. Jiang, M. Jia, J. R. Gunn, C. Yao, E. P. LaRochelle, J. R. Shell, P. Bruza, D. J. Gladstone, et al. Tissue pO2 distributions in xenograft tumors dynamically imaged by cherenkov-excited phosphorescence during fractionated radiation therapy. Nat. Commun. 11(1):1–9, 2020.

    Article  Google Scholar 

  3. Cattaneo, L. and P. Zunino. A computational model of drug delivery through microcirculation to compare different tumor treatments. Int. J. Numer. Methods Biomed. Eng. 30(11):1347–1371, 2014. https://doi.org/10.1002/cnm.2661.

    Article  CAS  PubMed  Google Scholar 

  4. Cattaneo, L. and P. Zunino. Computational models for fluid exchange between microcirculation and tissue interstitium. Netw. Heterogeneous Media 9(1):135–159, 2014.

    Article  Google Scholar 

  5. Celaya-Alcala, J. T., G. V. Lee, A. F. Smith, B. Li, S. Sakadžić, D. A. Boas, and T. W. Secomb. Simulation of oxygen transport and estimation of tissue perfusion in extensive microvascular networks: application to cerebral cortex. J. Cereb. Blood Flow Metab. 41(3):656–669, 2021. doi: 10.1177/0271678X20927100.

    Article  CAS  Google Scholar 

  6. D’Angelo, C. and A. Quarteroni. On the coupling of 1D and 3D diffusion-reaction equations. Application to tissue perfusion problems. Math. Models Methods Appl. Sci. 18(8):1481–1504, 2008,

    Article  Google Scholar 

  7. Dash, R. and J. Bassingthwaighte. Erratum to: Blood HbO2 and HbCO2 dissociation curves at varied O2, CO2, pH, 2,3-DPG and temperature levels (Annals of Biomedical Engineering (2004) 32:12 (1676–1693)). Ann. Biomed. Eng. 38(4):1683–1701, 2010. https://doi.org/10.1007/s10439-010-9948-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dunphy, E. P., I. A. Petersen, R. S. Cox, and M. A. Bagshaw. The influence of initial hemoglobin and blood pressure levels on results of radiation therapy for carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 16(5):1173–1178, 1989.

    Article  CAS  Google Scholar 

  9. Endeward, V., G. Gros, and K. D. Jürgens. Significance of myoglobin as an oxygen store and oxygen transporter in the intermittently perfused human heart: a model study. Cardiovasc. Res. 87(1):22–29, 2010. https://doi.org/10.1093/cvr/cvq036.

    Article  CAS  PubMed  Google Scholar 

  10. Evans, J. and P. Bergsjfø. The influence of anemia on the results of radiotherapy in carcinoma of the cervix. Radiology 84(4):709–717, 1965.

    Article  CAS  Google Scholar 

  11. Forster, J. C., L. G. Marcu, and E. Bezak. Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation. Phys. Med. 64:145–156, 2019.

    Article  Google Scholar 

  12. Fournié, M., N. Renon, Y. Renard, and D. Ruiz. CFD parallel simulation using getfem++ and mumps. In: Euro-Par 2010—Parallel Processing, edited by P. D’Ambra, M. Guarracino, and D. Talia. Berlin: Springer, 2010, pp. 77–88.

    Chapter  Google Scholar 

  13. Gagnon, L., A. F. Smith, D. A. Boas, A. Devor, T. W. Secomb, and S. Sakadžić. Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow, and oxygenation. Front. Comput. Neurosci. 10(August):1–20, 2016. https://doi.org/10.3389/fncom.2016.00082.

    Article  Google Scholar 

  14. Gallez, B., M. A. Neveu, P. Danhier, and B. Jordan: Manipulation of tumor oxygenation and radiosensitivity through modification of cell respiration. a critical review of approaches and imaging biomarkers for therapeutic guidance. Biochim. Biophys. Acta Bioenerget. 1858(8):700–711, 2017.

    Article  CAS  Google Scholar 

  15. Goldman, D.: Theoretical models of microvascular oxygen transport to tissue. Microcirculation 15(8):795–811, 2008. https://doi.org/10.1080/10739680801938289.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goldman, D. and A. Popel. A computational study of the effect of capillary network anastomoses and tortuosity on oxygen transport. J. Theor. Biol. 206(2):181–194, 2000.

    Article  CAS  Google Scholar 

  17. Gould, I., P. Tsai, D. Kleinfeld, and A. Linninger. The capillary bed offers the largest hemodynamic resistance to the cortical blood supply. J. Cereb. Blood Flow Metab. 37(1):52–68, 2017.

    Article  CAS  Google Scholar 

  18. Gray, L.H., A. Conger, M. Ebert, S. Hornsey, and O. Scott. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Brit. J. Radiol. 26(312):638–648, 1953.

    Article  CAS  Google Scholar 

  19. Greven, K.M., Solin, L.J., Hanks, G.E.: Prognostic factors in patients with bladder carcinoma treated with definitive irradiation. Cancer 65(4):908–912, 1990.

    Article  CAS  Google Scholar 

  20. Gérard, M., A. Corroyer-Dulmont, P. Lesueur, S. Collet, M. Chérel, M. Bourgeois, D. Stefan, E. Limkin, C. Perrio, J. Guillamo, B. Dubray, M. Bernaudin, J. Thariat, S. Valable: Hypoxia imaging and adaptive radiotherapy: a state-of-the-art approach in the management of glioma. Front. Med. 6:117, 2019. https://doi.org/10.3389/fonc.2019.01009

  21. Hughes, V. S., J. M. Wiggins, and D. W. Siemann. Tumor oxygenation and cancer therapy—then and now. Brit. J. Radiol. 92(1093):20170955, 2018.

    Article  Google Scholar 

  22. Intaglietta, M., P. Johnson, and R. Winslow. Microvascular and tissue oxygen distribution. Cardiovasc. Res. 32(4):632–643, 1996.

    Article  CAS  Google Scholar 

  23. Jain, R. K., R. T. Tong, and L. L. Munn. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: Insights from a mathematical model. Cancer Res. 67(6):2729–2735, 2007. https://doi.org/10.1158/0008-5472.CAN-06-4102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jarzyńska, M.: The application of practical Kedem–Katchalsky equations in membrane transport. Cent. Eur. J. Phys. 4(4):429–438, 2006. https://doi.org/10.2478/s11534-006-0034-x.

    Article  CAS  Google Scholar 

  25. Knocke, T. H., H. D. Weitmann, H. J. Feldmann, E. Selzer, and R. Pötter. Intratumoral pO2-measurements as predictive assay in the treatment of carcinoma of the uterine cervix. Radiother. Oncol. 53(2):99–104, 1999.

    Article  CAS  Google Scholar 

  26. Köppl, T., E. Vidotto, and B. Wohlmuth: A 3D-1D coupled blood flow and oxygen transport model to generate microvascular networks. Int. J. Numer. Methods Biomed. Eng. 2020. https://doi.org/10.1002/cnm.3386

  27. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. 52(6):409–415, 1919. https://doi.org/10.1113/jphysiol.1919.sp001839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laurino, F., A. Coclite, A. Tiozzo, P. Decuzzi, and P. Zunino. A hierarchical multiscale model for predicting the vascular behavior of blood-borne nanomedicines. Int. J. Multiscale Comput. Eng. 18(3):335–359, 2020. https://doi.org/10.1615/IntJMultCompEng.2020033358.

    Article  Google Scholar 

  29. Laurino, F. and P. Zunino: Derivation and analysis of coupled pdes on manifolds with high dimensionality gap arising from topological model reduction. ESAIM Math. Model. Numer. Anal. 53(6):2047–2080, 2019.

    Article  Google Scholar 

  30. Linninger, A., G. Hartung, S. Badr, and R. Morley. Mathematical synthesis of the cortical circulation for the whole mouse brain—Part I. Theory and image integration. Comput. Biol. Med. 110:265–275, 2019.

    Article  Google Scholar 

  31. Levick, J. R.: Capillary filtration-absorption balance reconsidered in light of dynamic extravascular factors. Exp. Physiol. 76(6):825–857, 1991. https://doi.org/10.1113/expphysiol.1991.sp003549

  32. Lücker, A., T. W. Secomb, B. Weber, and P. Jenny. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 24(3):e12337, 2017. https://doi.org/10.1111/micc.12337

  33. Lücker, A., B. Weber, and P. Jenny. A dynamic model of oxygen transport from capillaries to tissue with moving red blood cells. Am. J. Physiol. Heart Circ. Physiol. 308(3):H206–H216, 2015. https://doi.org/10.1152/ajpheart.00447.2014.

    Article  CAS  PubMed  Google Scholar 

  34. Macedo-Silva, C., V. Miranda-Gonçalves, R. Henrique, C. Jerónimo, and I. Bravo. The critical role of hypoxic microenvironment and epigenetic deregulation in esophageal cancer radioresistance. Genes 10(11):927, 2019.

    Article  CAS  Google Scholar 

  35. Martin, J. D., D. Fukumura, D. G. Duda, Y. Boucher, and R. K. Jain. Reengineering the tumor microenvironment to alleviate hypoxia and overcome cancer heterogeneity. Cold Spring Harbor Perspect. Med. 6(12):a027094, 2016.

    Article  Google Scholar 

  36. Michaelis, L., M. L. Menten, K. A. Johnson, and R. S. Goody. The original michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50(39):8264–8269, 2011. https://doi.org/10.1021/bi201284u.

    Article  CAS  PubMed  Google Scholar 

  37. Movsas, B., J. D. Chapman, A. L. Hanlon, E. M. Horwitz, R. E. Greenberg, C. Stobbe, G. E. Hanks, and A. Pollack. Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: preliminary findings. Urology 60(4):634–639, 2002.

    Article  Google Scholar 

  38. Munoz, C. J., A. Lucas, A. T. Williams, and P. Cabrales. A review on microvascular hemodynamics. Crit. Care Clin. 36(2):293–305, 2020. https://doi.org/10.1016/j.ccc.2019.12.011.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nordsmark, M., S. M. Bentzen, V. Rudat, D. Brizel, E. Lartigau, P. Stadler, A. Becker, M. Adam, M. Molls, J. Dunst, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. an international multi-center study. Radiother. Oncol. 77(1):18–24, 2005.

    Article  Google Scholar 

  40. Obrist, D., B. Weber, A. Buck, and P. Jenny. Red blood cell distribution in simplified capillary networks. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1921):2897–2918, 2010.

    Article  Google Scholar 

  41. Offeddu, G., L. Possenti, J. Loessberg-Zahl, P. Zunino, J. Roberts, X. Han, D. Hickman, C. Knutson, and R. Kamm. Application of transmural flow across in vitro microvasculature enables direct sampling of interstitial therapeutic molecule distribution. Small. 2019. https://doi.org/10.1002/smll.201902393

  42. Overgaard, J., H. S. Hansen, M. Overgaard, L. Bastholt, A. Berthelsen, L. Specht, B. Lindeløv, and K. Jørgensen: A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. results of the danish head and neck cancer study (DAHANCA) protocol 5-85. Radiother. Oncol. 46(2):135–146, 1998.

    Article  CAS  Google Scholar 

  43. Pittman, R. N. Oxygen transport in the microcirculation and its regulation. Microcirculation 20(2):117–137, 2013. https://doi.org/10.1111/micc.12017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Popel, A. S.: Theory of oxygen transport to tissue. Crit. Rev. Biomed. Eng. 17(3):257–321, 1989.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Popel, A. and P. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid Mech. 37:43–69, 2005. https://doi.org/10.1146/annurev.fluid.37.042604.133933.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Possenti, L., G. Casagrande, S. Di Gregorio, P. Zunino, and M. Costantino. Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. Microvasc. Res. 122:101–110, 2019. https://doi.org/10.1016/j.mvr.2018.11.003.

    Article  PubMed  Google Scholar 

  47. Possenti, L., S. Di Gregorio, G. Casagrande, M. Costantino, T. Rancati, and P. Zunino: A global sensitivity analysis approach applied to a multiscale model of microvascular flow. Comput. Methods Biomech. Biomed. Eng. 23(15):1215–1224, 2020.

  48. Possenti, L., S. di Gregorio, F. Gerosa, G. Raimondi, G. Casagrande, M. Costantino, and P. Zunino. A computational model for microcirculation including Fahraeus–Lindqvist effect, plasma skimming and fluid exchange with the tissue interstitium. Int. J. Numer. Methods Biomed. Eng.. 2019. https://doi.org/10.1002/cnm.3165.

  49. Pries, A. R. and T. W. Secomb. Microvascular blood viscosity in vivo and the endothelial surface layer. American journal of physiology. Heart Circ. Physiol. 289(6):H2657–H2664, 2005. https://doi.org/10.1152/ajpheart.00297.2005.

  50. Pries, A. R., T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo. Circ. Res. 75(5):904–915, 1994. https://doi.org/10.1161/01.RES.75.5.904.

    Article  CAS  PubMed  Google Scholar 

  51. Rasmussen, P. M., T. W. Secomb, and A. R. Pries. Modeling the hematocrit distribution in microcirculatory networks: a quantitative evaluation of a phase separation model. Microcirculation 25(3):1–17, 2018. https://doi.org/10.1111/micc.12445.

    Article  Google Scholar 

  52. Rosati, R., L. Possenti, A. Cicchetti, M. Costantino, T. Rancati, and P. Zunino. A multiscale model for oxygen delivery and radiation damage within the microenvironment. In: EFOMP—3rd European Congress of Medical Physics, 16–19 June 2021.

  53. Sakadžić, S., E. Roussakis, M. Yaseen, E. Mandeville, V. Srinivasan, K. Arai, S. Ruvinskaya, A. Devor, E. Lo, S. Vinogradov, and D. Boas. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue. Nat. Methods 7(9):755–759, 2010. https://doi.org/10.1038/nmeth.1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scott, O.: Some aspects of the effect of ionizing radiation on tumors in experimental animals. Adv. Biol. Med. Phys. 6:121–173, 1959.

  55. Secomb, T. W.: Blood flow in the microcircaulation. Annu. Rev. Fluid Mech. 49:443–461, 2017. https://doi.org/10.1146/annurev-fluid-010816-060302.

    Article  Google Scholar 

  56. Secomb, T., R. Hsu, N. Beamer, and B. Coull. Theoretical simulation of oxygen transport to brain by networks of microvessels: effects of oxygen supply and demand on tissue hypoxia. Microcirculation 7(4):237–247, 2000. https://doi.org/10.1111/j.1549-8719.2000.tb00124.x.

    Article  CAS  PubMed  Google Scholar 

  57. Secomb, T., R. Hsu, E. Ong, J. Gross, and M. Dewhirst. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 34(3):313–316, 1995.

    Article  CAS  Google Scholar 

  58. Secomb, T., R. Hsu, E. Park, and M. Dewhirst. Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann. Biomed. Eng. 32(11):1519–1529, 2004.

    Article  Google Scholar 

  59. Secomb, T. and A. Pries: The microcirculation: physiology at the mesoscale. J. Physiol. 589(5):1047–1052, 2011.

    Article  CAS  Google Scholar 

  60. Sefidgar, M., M. Soltani, K. Raahemifar, M. Sadeghi, H. Bazmara, M. Bazargan, and M. Mousavi Naeenian. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvasc. Res. 99:43–56, 2015. https://doi.org/10.1016/j.mvr.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  61. Sové, R. J., D. Goldman, and G. M. Fraser. A computational model of the effect of capillary density variability on oxygen transport, glucose uptake, and insulin sensitivity in prediabetes. Microcirculation 24(2):e12342, 2017. https://doi.org/10.1111/micc.12342.

  62. Stadler, P., A. Becker, H. J. Feldmann, G. Hänsgen, J. Dunst, F. Würschmidt, and M. Molls. Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 44(4):749–754, 1999.

    Article  CAS  Google Scholar 

  63. Steel, G., T. McMillan, and J. Peacock. The 5R’s of radiobiology. Int. J. Radiat. Biol. 56(6):1045–1048, 2009. https://doi.org/10.1080/09553008914552491.

    Article  Google Scholar 

  64. Sweeney, P., A. D’esposito, S. Walker-Samuel, and R. Shipley. Modelling the transport of fluid through heterogeneous, whole tumours in silico. PLoS Comput. Biol. 15(6):e1006751, 2019.

  65. Takeshi, K., K. Katsuyuki, T. Yoshiaki, M. Tadayoshi, M. Akira, and M. Katsumi. Definitive radiotherapy combined with high-dose-rate brachytherapy for stage III carcinoma of the uterine cervix: retrospective analysis of prognostic factors concerning patient characteristics and treatment parameters. Int. J. Radiat. Oncol. Biol. Phys. 41(2):319–327, 1998.

    Article  CAS  Google Scholar 

  66. Thames, H., H. Withers, L. Peters, and G. Fletcher. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int. J. Radiat. Oncol. Biol. Phys. 8(2):219–226, 1982. https://doi.org/10.1016/0360-3016(82)90517-x.

  67. Tsai, A., P. Johnson, and M. Intaglietta. Oxygen gradients in the microcirculation. Physiol. Rev. 83(3):933–963, 2003.

    Article  CAS  Google Scholar 

  68. Vaupel, P., F. Kallinowski, and P. Okunieff. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49(23):6449–6465, 1989.

    CAS  PubMed  Google Scholar 

  69. Walsh, J.C., A. Lebedev, E. Aten, K. Madsen, L. Marciano, and H. C. Kolb. The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid. Redox Signal. 21(10):1516–1554, 2014.

    Article  CAS  Google Scholar 

  70. Wang, Z., Q. Zhao, M. Cui, S. Pang, J. Wang, Y. Liu, and L. Xie. Probing temperature- and ph-dependent binding between quantum dots and bovine serum albumin by fluorescence correlation spectroscopy. Nanomaterials. 2017. https://doi.org/10.3390/nano7050093,

  71. Welter, M., T. Fredrich, H. Rinneberg, and H. Rieger. Computational model for tumor oxygenation applied to clinical data on breast tumor hemoglobin concentrations suggests vascular dilatation and compression. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0161267,

  72. Withers, H. R.: The four R’s of radiotherapy. Adv. Radiat. Biol. 5:241–271, 1975.

  73. Zhang, C., S. Bélanger, P. Pouliot, and F. Lesage. Measurement of local partial pressure of oxygen in the brain tissue under normoxia and epilepsy with phosphorescence lifetime microscopy. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0135536.

Download references

Acknowledgments

This work is supported by the AIRC - The Italian Foundation for Cancer Research - Investigator Grant IG21479 Mechanistic computational modelling of radiation damage to microvasculature and of its effect on tumour microenvironment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Cicchetti.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 402 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Possenti, L., Cicchetti, A., Rosati, R. et al. A Mesoscale Computational Model for Microvascular Oxygen Transfer. Ann Biomed Eng 49, 3356–3373 (2021). https://doi.org/10.1007/s10439-021-02807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02807-x

Keywords

Navigation