Genetic Mutations Associated with Hormone-Positive Breast Cancer in a Small Cohort of Ethiopian Women

Abstract

In Ethiopia, a breast cancer diagnosis is associated with a prognosis significantly worse than that of Europe and the US. Further, patients presenting with breast cancer in Ethiopia are far younger, on average, and patients are typically diagnosed at very late stages, relative to breast cancer patients of European descent. Emerging data suggest that a large proportion of Ethiopian patients have hormone-positive (ER+) breast cancer. This is surprising given (1) that patients have late-stage breast cancer at the time of diagnosis, (2) that African Americans with breast cancer frequently have triple negative breast cancer (TNBC), and (3) these patients typically receive chemotherapy, not hormone-targeting drugs. To further examine the similarity of Ethiopian breast tumors to those of African Americans or of those of European descent, we sequenced matched tumor and normal adjacent tissue from Ethiopian patients from a small pilot collection. We identified mutations in 615 genes across all three patients, unique to the tumor tissue. Across this analysis, we found far more mutations shared between Ethiopian patient tissue and that from white patients (103) than we did comparing to African Americans (3). Several mutations were found in extracellular matrix encoding genes with known roles in tumor cell growth and metastasis. We suggest future mechanistic studies on this disease focus on these genes first, toward finding new treatment strategies for breast cancer patients in Ethiopia.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. 1.

    Abbad, A., H. Baba, H. Dehbi, M. Elmessaoudi-Idrissi, Z. Elyazghi, O. Abidi, and F. Radouani. Genetics of breast cancer in African populations: a literature review. Glob. Health Epidemiol Genom. 3:2018. https://doi.org/10.1017/gheg.2018.8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Adair-Kirk, T.L., J. J. Atkinson, T. J. Broekelmann, M. Doi, K. Tryggvason, J. H. Miner, R. P. Mecham, R. M. Senior. A site on laminin alpha 5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J. Immunol. 171(1):398-406, 2003. https://doi.org/10.4049/jimmunol.171.1.398.

  3. 3.

    Aguilar, H., A. Urruticoechea, P. Halonen, K. Kiyotani, T. Mushiroda, X. Barril, J. Serra-Musach, A. Islam, L. Caizzi, L. Di Croce, E. Nevedomskaya, W. Zwart, J. Bostner, E. Karlsson, G. Perez Tenorio, T. Fornander, D. C. Sgroi, R. Garcia-Mata, M. P. Jansen, N. Garcia, N. Bonifaci, F. Climent, M. T. Soler, A. Rodriguez-Vida, M. Gil, J. Brunet, G. Martrat, L. Gomez-Baldo, A. I. Extremera, A. Figueras, J. Balart, R. Clarke, K. L. Burnstein, K. E. Carlson, J. A. Katzenellenbogen, M. Vizoso, M. Esteller, A. Villanueva, A. B. Rodriguez-Pena, X. R. Bustelo, Y. Nakamura, H. Zembutsu, O. Stal, R. L. Beijersbergen, and M. A. Pujana. VAV3 mediates resistance to breast cancer endocrine therapy. Breast Cancer Res. 16(3):R53, 2014. https://doi.org/10.1186/bcr3664.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Antoniou, A., P. D. Pharoah, S. Narod, H. A. Risch, J. E. Eyfjord, J. L. Hopper, N. Loman, H. Olsson, O. Johannsson, A. Borg, B. Pasini, P. Radice, S. Manoukian, D. M. Eccles, N. Tang, E. Olah, H. Anton-Culver, E. Warner, J. Lubinski, J. Gronwald, B. Gorski, H. Tulinius, S. Thorlacius, H. Eerola, H. Nevanlinna, K. Syrjakoski, O. P. Kallioniemi, D. Thompson, C. Evans, J. Peto, F. Lalloo, D. G. Evans, and D. F. Easton. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72(5):1117–1130, 2003. https://doi.org/10.1086/375033.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Anyanwu, S. N. C. Temporal trends in breast cancer presentation in the third world. J Exp Clin Canc Res. 2008. https://doi.org/10.1186/1756-9966-27-17.

    Article  Google Scholar 

  6. 6.

    Barkan, D., J. E. Green, and A. F. Chambers. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur. J. Cancer. 46(7):1181–1188, 2010. https://doi.org/10.1016/j.ejca.2010.02.027.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chandler, M. R., E. P. Bilgili, and N. D. Merner. A review of whole-exome sequencing efforts toward hereditary breast cancer susceptibility gene discovery. Hum Mutat. 37(9):835–846, 2016. https://doi.org/10.1002/humu.23017.

    Article  PubMed  Google Scholar 

  8. 8.

    Churpek, J. E., T. Walsh, Y. Zheng, Z. Moton, A. M. Thornton, M. K. Lee, S. Casadei, A. Watts, B. Neistadt, M. M. Churpek, D. Huo, C. Zvosec, F. Liu, Q. Niu, R. Marquez, J. Zhang, J. Fackenthal, M. C. King, and O. I. Olopade. Inherited predisposition to breast cancer among African American women. Breast Cancer Res Treat. 149(1):31–39, 2015. https://doi.org/10.1007/s10549-014-3195-0.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Colditz, G. A., W. C. Willett, D. J. Hunter, M. J. Stampfer, J. E. Manson, C. H. Hennekens, B. A. Rosner, F. E. Speizer. Family History, Age, and Risk of Breast Cancer. JAMA 270(3):338–343, 1993.

  10. 10.

    Courtney, K. D., R. B. Corcoran, and J. A. Engelman. The PI3K pathway as drug target in human cancer. J. Clin. Oncol. 28(6):1075–1083, 2010. https://doi.org/10.1200/Jco.2009.25.3641.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Cukierman, E., and D. E. Bassi. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin. Cancer Biol. 20(3):139–145, 2010. https://doi.org/10.1016/j.semcancer.2010.04.004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Dumont, N., B. Liu, R. A. Defilippis, H. Chang, J. T. Rabban, A. N. Karnezis, J. A. Tjoe, J. Marx, B. Parvin, and T. D. Tlsty. Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia. 15(3):249–262, 2013.

    CAS  Article  Google Scholar 

  13. 13.

    Eber-Schulz, P., W. Tariku, C. Reibold, A. Addissie, C. Wickenhauser, C. Fathke, S. Hauptmann, A. Jemal, C. Thomssen, and E. J. Kantelhardt. Survival of breast cancer patients in rural Ethiopia. Breast Cancer Res. Treat. 170(1):111–118, 2018. https://doi.org/10.1007/s10549-018-4724-z.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Fumagalli, D., T. R. Wilson, R. Salgado, X. Lu, J. Yu, C. O’Brien, K. Walter, L. Y. Huw, C. Criscitiello, I. Laios, V. Jose, D. N. Brown, F. Rothe, M. Maetens, D. Zardavas, P. Savas, D. Larsimont, M. J. Piccart-Gebhart, S. Michiels, M. R. Lackner, C. Sotiriou, and S. Loi. Somatic mutation, copy number and transcriptomic profiles of primary and matched metastatic estrogen receptor-positive breast cancers. Ann. Oncol. 27(10):1860–1866, 2016. https://doi.org/10.1093/annonc/mdw286.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Gagnoux-Palacios, L., M. Allegra, F. Spirito, O. Pommeret, C. Romero, J. P. Ortonne, and G. Meneguzzi. The short arm of the laminin gamma2 chain plays a pivotal role in the incorporation of laminin 5 into the extracellular matrix and in cell adhesion. J. Cell Biol. 153(4):835–850, 2001. https://doi.org/10.1083/jcb.153.4.835.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Ghajar, C. M., and M. J. Bissell. Extracellular matrix control of mammary gland morphogenesis and tumorigenesis: insights from imaging. Histochem. Cell Biol. 130(6):1105–1118, 2008. https://doi.org/10.1007/s00418-008-0537-1.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Gracia-Aznarez, F. J., V. Fernandez, G. Pita, P. Peterlongo, O. Dominguez, M. de la Hoya, M. Duran, A. Osorio, L. Moreno, A. Gonzalez-Neira, J. M. Rosa-Rosa, O. Sinilnikova, S. Mazoyer, J. Hopper, C. Lazaro, M. Southey, F. Odefrey, S. Manoukian, I. Catucci, T. Caldes, H. T. Lynch, F. S. Hilbers, C. J. van Asperen, H. F. Vasen, D. Goldgar, P. Radice, P. Devilee, and J. Benitez. Whole exome sequencing suggests much of non-BRCA1/BRCA2 familial breast cancer is due to moderate and low penetrance susceptibility alleles. PLoS ONE 8(2):2013. https://doi.org/10.1371/journal.pone.0055681.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Hadgu, E., D. Seifu, W. Tigneh, Y. Bokretsion, A. Bekele, M. Abebe, T. Sollie, S. D. Merajver, C. Karlsson, and M. G. Karlsson. Breast cancer in Ethiopia: evidence for geographic difference in the distribution of molecular subtypes in Africa. BMC Womens Health. 18(1):40, 2018. https://doi.org/10.1186/s12905-018-0531-2.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Han, S. A., S. W. Kim, E. Kang, S. K. Park, S. H. Ahn, M. H. Lee, S. J. Nam, W. Han, Y. T. Bae, H. A. Kim, Y. U. Cho, M. C. Chang, N. S. Paik, K. T. Hwang, S. J. Kim, D. Y. Noh, D. H. Choi, W. C. Noh, L. S. Kim, K. S. Kim, Y. J. Suh, J. E. Lee, Y. Jung, B. I. Moon, J. H. Yang, B. H. Son, C. K. Yom, S. Y. Kim, H. Lee, S. H. Jung, K. R. Group, the Korean Breast Cancer S. The prevalence of BRCA mutations among familial breast cancer patients in Korea: results of the Korean Hereditary Breast Cancer study. Fam. Cancer. 12(1):75–81, 2013. https://doi.org/10.1007/s10689-012-9578-7

  20. 20.

    Indra, I., and K. A. Beningo. An in vitro correlation of metastatic capacity, substrate rigidity, and ECM composition. J. Cell Biochem. 112(11):3151–3158, 2011. https://doi.org/10.1002/jcb.23241.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Jemal, A., and S. A. Fedewa. Is the prevalence of ER-negative breast cancer in the US higher among Africa-born than US-born black women? Breast Cancer Res. Treat. 135(3):867–873, 2012. https://doi.org/10.1007/s10549-012-2214-2.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Jiagge, E., A. S. Jibril, D. Chitale, J. M. Bensenhaver, B. Awuah, M. Hoenerhoff, E. Adjei, M. Bekele, E. Abebe, S. D. Nathanson, K. Gyan, B. Salem, J. Oppong, F. Aitpillah, I. Kyei, E. O. Bonsu, E. Proctor, S. D. Merajver, M. Wicha, A. Stark, and L. A. Newman. Comparative analysis of breast cancer phenotypes in African American, White American, and West versus East African patients: correlation between African ancestry and triple-negative breast cancer. Ann. Surg. Oncol. 23(12):3843–3849, 2016. https://doi.org/10.1245/s10434-016-5420-z.

    Article  PubMed  Google Scholar 

  23. 23.

    Jinka, R., R. Kapoor, P. G. Sistla, T. A. Raj, and G. Pande. Alterations in cell-extracellular matrix interactions during progression of cancers. Int. J. Cell. Biol. 2012:2012. https://doi.org/10.1155/2012/219196.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kantelhardt, E. J., C. Hanson, U. S. Albert, and J. Wacker. Breast cancer in countries of limited resources. Breast Care (Basel). 3(1):10–16, 2008. https://doi.org/10.1159/000114409.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kantelhardt, E. J., A. Mathewos, A. Aynalem, T. Wondemagegnehu, A. Jemal, M. Vetter, E. Knauf, A. Reeler, S. Bogale, C. Thomssen, A. Stang, T. Gemechu, P. Trocchi, and B. Yonas. The prevalence of estrogen receptor-negative breast cancer in Ethiopia. BMC Cancer. 14:895, 2014. https://doi.org/10.1186/1471-2407-14-895.

    Article  PubMed  Google Scholar 

  26. 26.

    Kantelhardt, E. J., P. Zerche, A. Mathewos, P. Trocchi, A. Addissie, A. Aynalem, T. Wondemagegnehu, T. Ersumo, A. Reeler, B. Yonas, M. Tinsae, T. Gemechu, A. Jemal, C. Thomssen, A. Stang, and S. Bogale. Breast cancer survival in Ethiopia: a cohort study of 1,070 women. Int. J. Cancer 135(3):702–709, 2014. https://doi.org/10.1002/ijc.28691.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Kuleshov, M. V., M. R. Jones, A. D. Rouillard, N. F. Fernandez, Q. N. Duan, Z. C. Wang, S. Koplev, S. L. Jenkins, K. M. Jagodnik, A. Lachmann, M. G. McDermott, C. D. Monteiro, G. W. Gundersen, and A. Ma’ayan. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44(W1):W90–W97, 2016. https://doi.org/10.1093/nar/gkw377.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Langmead, B., C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009. https://doi.org/10.1186/gb-2009-10-3-r25.

    Article  PubMed  Google Scholar 

  29. 29.

    Lesseur, C., B. Diergaarde, A. F. Olshan, V. Wunsch-Filho, A. R. Ness, G. Liu, M. Lacko, J. Eluf-Neto, S. Franceschi, P. Lagiou, G. J. Macfarlane, L. Richiardi, S. Boccia, J. Polesel, K. Kjaerheim, D. Zaridze, M. Johansson, A. M. Menezes, M. P. Curado, M. Robinson, W. Ahrens, C. Canova, A. Znaor, X. Castellsague, D. I. Conway, I. Holcatova, D. Mates, M. Vilensky, C. M. Healy, N. Szeszenia-Dabrowska, E. Fabianova, J. Lissowska, J. R. Grandis, M. C. Weissler, E. H. Tajara, F. D. Nunes, M. B. de Carvalho, S. Thomas, R. J. Hung, W. H. Peters, R. Herrero, G. Cadoni, H. B. Bueno-de-Mesquita, A. Steffen, A. Agudo, O. Shangina, X. Xiao, V. Gaborieau, A. Chabrier, D. Anantharaman, P. Boffetta, C. I. Amos, J. D. McKay, and P. Brennan. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat. Genet. 48(12):1544–1550, 2016. https://doi.org/10.1038/ng.3685.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and G. P. D. Proc. The sequence alignment/map format and SAMtools. Bioinformatics. 25(16):2078–2079, 2009. https://doi.org/10.1093/bioinformatics/btp352.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Lindor, N. M., D. E. Goldgar, S. V. Tavtigian, S. E. Plon, and F. J. Couch. BRCA1/2 sequence variants of uncertain significance: a primer for providers to assist in discussions and in medical management. Oncologist. 18(5):518–524, 2013. https://doi.org/10.1634/theoncologist.2012-0452.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lu, P., V. M. Weaver, and Z. Werb. The extracellular matrix: a dynamic niche in cancer progression. J. Cell. Biol. 196(4):395–406, 2012. https://doi.org/10.1083/jcb.201102147.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Lund, M. J., K. F. Trivers, P. L. Porter, R. J. Coates, B. Leyland-Jones, O. W. Brawley, E. W. Flagg, R. M. O’Regan, S. G. Gabram, and J. W. Eley. Race and triple negative threats to breast cancer survival: a population-based study in Atlanta, GA. Breast Cancer Res Treat. 113(2):357–370, 2009. https://doi.org/10.1007/s10549-008-9926-3.

    Article  PubMed  Google Scholar 

  34. 34.

    Maatta, K., T. Rantapero, A. Lindstrom, M. Nykter, M. Kankuri-Tammilehto, S. L. Laasanen, and J. Schleutker. Whole-exome sequencing of Finnish hereditary breast cancer families. Eur. J. Hum. Genet. 25(1):85–93, 2016. https://doi.org/10.1038/ejhg.2016.141.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Mahmoodi, F., and H. Akrami. PlGF knockdown decreases tumorigenicity and stemness properties of spheroid body cells derived from gastric cancer cells. J Cell Biochem. 118(4):851–859, 2017. https://doi.org/10.1002/jcb.25762.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Memirie, S. T., M. K. Habtemariam, M. Asefa, B. T. Deressa, G. Abayneh, B. Tsegaye, M. W. Abraha, G. Ababi, A. Jemal, T. R. Rebbeck, and S. Verguet. Estimates of cancer incidence in Ethiopia in 2015 using population-based registry data. J. Glob. Oncol. 4:1–11, 2018. https://doi.org/10.1200/JGO.17.00175.

    Article  PubMed  Google Scholar 

  37. 37.

    Moggs, J. G., T. C. Murphy, F. L. Lim, D. J. Moore, R. Stuckey, K. Antrobus, I. Kimber, and G. Orphanides. Anti-proliferative effect of estrogen in breast cancer cells that re-express ERalpha is mediated by aberrant regulation of cell cycle genes. J. Mol. Endocrinol. 34(2):535–551, 2005. https://doi.org/10.1677/jme.1.01677.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Naba, A., K. R. Clauser, J. M. Lamar, S. A. Carr, R. O. Hynes. Extracellular matrix signatures of human mammary carcinoma identify novel metastasis promoters. eLife. 3:e01308, 2014. https://doi.org/10.7554/elife.01308.

  39. 39.

    Newell, L. F., S. G. Holtan, J. E. Yates, L. Pereira, J. W. Tyner, I. Burd, G. C. Bagby. PlGF enhances TLR-dependent inflammatory responses in human mononuclear phagocytes. Am. J. Reproduc. Immunol. 78(4), 2017. https://doi.org/10.1111/aji.12709.

  40. 40.

    Oluwagbemiga, L. A., A. Oluwole, A. A. Kayode. Seventeen years after BRCA1: what is the BRCA mutation status of the breast cancer patients in Africa?—A systematic review. SpringerPlus. 1(83), 2012.

  41. 41.

    Oudin, M. J., O. Jonas, T. Kosciuk, L. C. Broye, B. C. Guido, J. Wyckoff, D. Riquelme, J. M. Lamar, S. B. Asokan, C. Whittaker, D. Ma, R. Langer, M. J. Cima, K. B. Wisinski, R. O. Hynes, D. A. Lauffenburger, P. J. Keely, J. E. Bear, and F. B. Gertler. Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression. Cancer Discov. 6(5):516–531, 2016. https://doi.org/10.1158/2159-8290.CD-15-1183.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Pharoah, P. D. P., N. E. Day, S. Duffy, D. F. Easton, B. A. J. Ponder. Family history and the risk of breast cancer: a systematic review and meta-analysis. Int. J. Cancer. 1997.

  43. 43.

    Pickup, M. W., J. K. Mouw, and V. M. Weaver. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15:1243–1253, 2014. https://doi.org/10.15252/embr.201439246.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Pickup, M. W., J. K. Mouw, and V. M. Weaver. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15(12):1243–1253, 2014. https://doi.org/10.15252/embr.201439246.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Robinson, D. R., Y. M. Wu, P. Vats, F. Su, R. J. Lonigro, X. Cao, S. Kalyana-Sundaram, R. Wang, Y. Ning, L. Hodges, A. Gursky, J. Siddiqui, S. A. Tomlins, S. Roychowdhury, K. J. Pienta, S. Y. Kim, J. S. Roberts, J. M. Rae, C. H. Van Poznak, D. F. Hayes, R. Chugh, L. P. Kunju, M. Talpaz, A. F. Schott, and A. M. Chinnaiyan. Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat. Genet. 45(12):1446–1451, 2013. https://doi.org/10.1038/ng.2823.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Shenkutie, B., Y. Mekonnen, D. Seifu, E. Abebe, W. Ergete, A. Damie, W. Lako Labisso. Biological and clinicopathological characteristics of breast cancer at Tikur Anbessa specialized hospital, Addis Ababa, Ethiopia. J. Cancer Sci. Ther. 9(12):755–60, 2017.

  47. 47.

    Shiovitz, S., and L. A. Korde. Genetics of breast cancer: a topic in evolution. Ann. Oncol. 26(7):1291–1299, 2015. https://doi.org/10.1093/annonc/mdv022.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43):15545–15550, 2005. https://doi.org/10.1073/pnas.0506580102.

    CAS  Article  Google Scholar 

  49. 49.

    Thompson, E. R., M. A. Doyle, G. L. Ryland, S. M. Rowley, D. Y. Choong, R. W. Tothill, H. Thorne, kConFab, D. R. Barnes, J. Li, J. Ellul, G. K. Philip, Y. C. Antill, P. A. James, A. H. Trainer, G. Mitchell, I. G. Campbell. Exome sequencing identifies rare deleterious mutations in DNA repair genes FANCC and BLM as potential breast cancer susceptibility alleles. PLoS Genet. 8(9):e1002894, 2012. https://doi.org/10.1371/journal.pgen.1002894.

  50. 50.

    Timotewos, G., A. Solomon, A. Mathewos, A. Addissie, S. Bogale, T. Wondemagegnehu, A. Aynalem, B. Ayalnesh, H. Dagnechew, W. Bireda, E. S. Kroeber, R. Mikolajczyk, F. Bray, A. Jemal, and E. J. Kantelhardt. First data from a population based cancer registry in Ethiopia. Cancer Epidemiol. 53:93–98, 2018. https://doi.org/10.1016/j.canep.2018.01.008.

    Article  PubMed  Google Scholar 

  51. 51.

    Tsuji, T., Y. Kawada, M. Kai-Murozono, S. Komatsu, S. A. Han, K. Takeuchi, H. Mizushima, K. Miyazaki, and T. Irimura. Regulation of melanoma cell migration and invasion by laminin-5 and alpha3beta1 integrin (VLA-3). Clin. Exp. Metastasis. 19(2):127–134, 2002. https://doi.org/10.1023/a:1014573204062.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Vanderpuye, V., S. Grover, N. Hammad, P. Pooja, H. Simonds, F. Olopade, D. C. Stefan. An update on the management of breast cancer in Africa. Infect Agents Cancer. 2017. https://doi.org/10.1186/s13027-017-0124-y.

  53. 53.

    Weiner, C. M., A. Mathewos, A. Addissie, W. Ayele, A. Aynalem, T. Wondemagegnehu, A. Wienke, A. Jemal, P. Zerche, C. Thomssen, A. Seidler, and E. J. Kantelhardt. Characteristics and follow-up of metastatic breast cancer in Ethiopia: a cohort study of 573 women. Breast. 42:23–30, 2018. https://doi.org/10.1016/j.breast.2018.08.095.

    Article  PubMed  Google Scholar 

  54. 54.

    Wolf, K., and P. Friedl. Mapping proteolytic cancer cell-extracellular matrix interfaces. Clin Exp Metastasis. 26(4):289–298, 2009. https://doi.org/10.1007/s10585-008-9190-2.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Yaghjyan, L., G. A. Colditz, L. C. Collins, S. J. Schnitt, B. Rosner, C. Vachon, and R. M. Tamimi. Mammographic breast density and subsequent risk of breast cancer in postmenopausal women according to tumor characteristics. J. Natl. Cancer Inst. 103(15):1179–1189, 2011. https://doi.org/10.1093/jnci/djr225.

    Article  PubMed  Google Scholar 

  56. 56.

    Yako, Y. Y., M. Brand, M. Smith, and D. Kruger. Inflammatory cytokines and angiogenic factors as potential biomarkers in South African pancreatic ductal adenocarcinoma patients: a preliminary report. Pancreatology. 17(3):438–444, 2017. https://doi.org/10.1016/j.pan.2017.03.003.

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Zahir, N., J. N. Lakins, A. Russell, W. Ming, C. Chatterjee, G. I. Rozenberg, M. P. Marinkovich, and V. M. Weaver. Autocrine laminin-5 ligates alpha6beta4 integrin and activates RAC and NFkappaB to mediate anchorage-independent survival of mammary tumors. J. Cell Biol. 163(6):1397–1407, 2003. https://doi.org/10.1083/jcb.200302023.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Trisha Zintel for her help with sequencing. We thank Carey Dougan and Ning-Hsuan Tseng for reading and commenting on this manuscript. The results shown here are in whole or part based upon data generated by the TCGA Research Network: https://www.cancer.gov/tcga. This work was supported by a seed grant awarded to SRP and CCB from the Models 2 Medicine Center, part of the Institute for Applied Life Sciences at UMass Amherst. ADS was supported by a National Science Foundation Graduate Research Fellowship (Award 1451512). This work was supported by an NSF CAREER (DMR1454806), and NIH grants R21CA223783 and DP2CA186573 awarded to SRP. Funding was also provided in part by a generous donation from the Giglio Family to the Wallace H. Coulter Department of Biomedical Engineering (MOP). SRP was also supported by a grant from the Jane Koskinas Ted Giovanis Foundation for Health and Policy. SRP is an Armstrong Professional Development Professor.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shelly R. Peyton or Courtney C. Babbitt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Stefan M. Duma oversaw the review of this article.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schwartz, A.D., Adusei, A., Tsegaye, S. et al. Genetic Mutations Associated with Hormone-Positive Breast Cancer in a Small Cohort of Ethiopian Women. Ann Biomed Eng (2021). https://doi.org/10.1007/s10439-021-02800-4

Download citation

Keywords

  • Metastasis
  • BRCA
  • TCGA
  • MAPK
  • Extracellular matrix