Severe Calcaneus Injury Probability Curves Due to Under-Body Blast


The lower extremity is the most frequently injured body region to mounted soldiers during underbody blast (UBB) events. UBB events often produce large deformations of the floor and subsequent acceleration of the lower limb that are not sufficiently mitigated by the combat boot, leaving the calcaneus bone vulnerable to injury. Biomechanical experiments simulating UBB loading scenarios were conducted in a laboratory environment using isolated postmortem human subject (PMHS) leg components. Each leg component was tested twice: one sub-injurious test followed by a injury-targeted test. This enabled the use of interval censoring for each specimen in the survival statistical analysis to generate the human injury probability curves (HIPCs). Foot contact forces were measured in both the hindfoot and forefoot. Strains and acoustic emission signals at the calcaneus and distal tibia were utilized to determine injury timing. The footplate velocities of the injury tests ranged 8–13 m/s with time-to-peak velocity of 1.8–2.5 ms while the velocities of non-injury tests ranged from 4 to 6 m/s with the same time-to-peak. The majority of the injuries were severe calcaneus fractures (Sanders III–IV). Secondary injuries included fractures to the distal tibia, talus, cuboid and cuneiform. These injury outcomes were found to be consistent with those reported in UBB injury literature. The HIPCs for the severe calcaneus fracture were developed using the vertical heel contact force as the injury correlation measure through survival analysis statistical method in the form of lognormal function. This work represents the first set of HIPCs dedicated to the severe calcaneus fracture using the biomechanical force measurement closest to the injury location. This injury probability curve will enable biomechanical response validation of computational models, development of ATD injury assessment reference curve, and injury prediction capability for computational models or ATDs in the UBB environment.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    Aggelis, D. G., M. Strantza, O. Louis, F. Boulpaep, D. Polyzos, and D. van Hemelrijck. Fracture of human femur tissue monitored by acoustic emission sensors. Sensors 15(3):5803–5819, 2015.

    Article  PubMed  Google Scholar 

  2. 2.

    Bailey, A. M., J. J. Christopher, F. Brozoski, and R. S. Salzar. Post mortem human surrogate injury response of the pelvis and lower extremities to simulated underbody blast. Ann. Biomed. Eng. 43(8):1907–1917, 2015.

    Article  PubMed  Google Scholar 

  3. 3.

    Bailey, A. M., J. J. Christopher, R. S. Salzar, and F. Brozoski. Comparison of hybrid-III and postmortem human surrogate response to simulated underbody blast loading. J. Biomech. Eng. 137(5):2015.

    Article  Google Scholar 

  4. 4.

    Bailey, A. M., T. L. McMurry, G. S. Poplin, R. S. Salzar, and J. R. Crandall. Survival model for foot and leg high rate axial impact injury data. Traffic Inj. Prev. 16(Suppl 2):S96–S102, 2015.

    Article  Google Scholar 

  5. 5.

    Baker, W. A., M. R. Chowdhury, and C. D. Untaroiu. Validation of a booted finite element model of the WIAMan ATD lower limb in component and whole-body vertical loading impacts with an assessment of the boot influence model on response. Traffic Inj. Prev. 19(5):549–554, 2018.

    Article  Google Scholar 

  6. 6.

    Chandler, H., K. MacLeod, and J. G. Penn-Barwell. Extremity injuries sustained by the UK military in the Iraq and Afghanistan conflicts: 2003–2014. Injury. 48(7):1439–1443, 2017.

    Article  Google Scholar 

  7. 7.

    Chirvi, S., F. Pintar, N. Yoganandan, A. Banerjee, M. Schlick, W. Curry, and L. Voo. Human foot-ankle injuries and associated risk curves from under body blast loading conditions. Stapp Car Crash J. 61:157–173, 2017.

    PubMed  Google Scholar 

  8. 8.

    Crandall, J. R., S. M. Kuppa, G. S. Klopp, G. W. Hall, W. D. Pilkey, and S. R. Hurwitz. Injury mechanisms and criteria for the human foot and ankle under axial impacts to the foot. Int. J. Crashworthiness 3(2):147–162, 1998.

    Article  Google Scholar 

  9. 9.

    Danelson, K., L. Watkins, J. Hendricks, et al. Analysis of the frequency and mechanism of injury to warfighters in the under-body blast environment. Stapp Car Crash J. 62:489–513, 2018.

    PubMed  Google Scholar 

  10. 10.

    Eskridge, S. L., C. A. Macera, M. R. Galarneau, T. L. Holbrook, S. I. Woodruff, A. J. Macgregor, D. J. Morton, and R. A. Shaffer. Injuries from combat explosions in Iraq: injury type, location, and severity. Injury 43:1678–1682, 2012.

    Article  Google Scholar 

  11. 11.

    Funk, J. R., J. R. Crandall, L. J. Tourret, C. B. MacMahon, C. R. Bass, J. T. Patrie, N. Khaewpong, and R. H. Eppinger. The axial injury tolerance of the human foot/ankle complex and the effect of Achilles tension. J. Biomech. Eng. 124(6):750–757, 2002.

    Article  Google Scholar 

  12. 12.

    Gondusky, J., and M. P. Reiter. Protecting military convoys in Iraq: an examination of battle injuries sustained by a mechanized Battalian during Operation Iraqi Freedom II. Mil. Med. 170:546–549, 2005.

    Article  Google Scholar 

  13. 13.

    Goodwin, B. D., F. A. Pintar, and N. Yoganandan. Acoustic emission signatures during failure of vertebra and long bone. Ann. Biomed. Eng. 45:1520–1533, 2017.

    Article  PubMed  Google Scholar 

  14. 14.

    Grigoriadis, G., D. Carpanen, C. E. Webster, A. Ramasamy, N. Newell, and S. D. Masouros. Lower limb posture affects the mechanism of injury in under-body blast. Ann. Biomed. Eng. 47(1):306–316, 2019.

    Article  Google Scholar 

  15. 15.

    Hoencamp, R., F. J. Idenburg, J. F. Hamming, and E. C. T. H. Tan. Incidence and epidemiology of casualties treated at the Dutch role 2 enhanced medical treatment facility at Multi National Base Tarin Kowt, Afghanistan in the period 2006–2010. World J. Surg. 38:1713–1718, 2014.

    Article  Google Scholar 

  16. 16.

    Krugh, M., and M. D. Langaker. Dual Energy Xray Absorptiometry (DEXA). Dual Energy Xray Absorptiometry (DEXA). In: StatPearls. Treasure Island (FL): StatPearls Publishing 2020.

  17. 17.

    Lei, J., F. Zhu, B. Jiang, and Z. Wang. Underbody blast effect on the pelvis and lumbar spine: a computational study. J. Mech. Behav. Biomed. Mater. 79:9–19, 2018.

    Article  Google Scholar 

  18. 18.

    Lin, D. L., K. L. Kirk, K. P. Murphy, K. A. Mchale, and W. C. Doukas. Evaluation of orthopaedic injuries in operation enduring freedom. J. Orthop. Trauma 18:300–305, 2004.

    Article  Google Scholar 

  19. 19.

    Loftis, K. L., E. L. Mazuchowski, M. C. Clouser, and P. J. Gillich. Prominent injury types in vehicle underbody blast. Mil. Med. 184(Suppl 1):261–264, 2019.

    Article  Google Scholar 

  20. 20.

    McKay, B. J., and C. A. Bir. Lower extremity injury criteria for evaluating military vehicle occupant injury in underbelly blast events. Stapp Car Crash J. 53:229–249, 2009.

    PubMed  Google Scholar 

  21. 21.

    McMaster, J., M. Parry, W. A. Wallace, L. Wheeler, C. Owen, R. W. Lowne, A. K. Roberts. Biomechanics of ankle and hindfoot injuries in dynamic axial loading. In: 44th Stapp Car Crash Conference, Atlanta, GA, 2000.

  22. 22.

    Morrison, J. J., N. Hunt, M. Midwinter, and J. Jansen. Associated injuries in casualties with traumatic lower extremity amputations caused by improvised explosive devices. Brit. J. Surg. 99:362–366, 2012.

    CAS  Article  Google Scholar 

  23. 23.

    Ott, K., D. Drewry, M. Luongo, J. Andrist, R. Armiger, J. Titus, and C. Demetropoulos. Comparison of human surrogate responses in underbody blast loading conditions. J. Biomech. Eng. 142(9):2020.

    Article  PubMed  Google Scholar 

  24. 24.

    Owens, B. D., J. F. Kragh, Jr, J. C. Wenke, J. Macaitis, C. E. Wade, and J. B. Holcomb. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J. Trauma 64(2):295–299, 2008.

    PubMed  Google Scholar 

  25. 25.

    Ramasamy, A., A. M. Hill, and J. C. Clasper. Improvised explosive devices: pathophysiology, injury profiles and current medical management. J. R. Army Med. Corps 155:265–272, 2009.

    CAS  Article  Google Scholar 

  26. 26.

    Ramasamy, A., A. M. Hill, R. Phillip, I. Gibb, A. M. J. Bull, and J. C. Clasper. The modern ‘‘deck-slap’’injury—calcaneal blast fractures from vehicle explosions. J. Trauma Inj. Infect. Crit. Care 71:1694–1698, 2011.

    Article  Google Scholar 

  27. 27.

    Sanders, R., P. Fortin, T. DiPasquale, and A. Walling. Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification. Clin. Orthop. Relat. Res 290:87–95, 1993.

    Google Scholar 

  28. 28.

    Vasquez, K. B., F. T. Brozoski, K. P. Logsdon, and V. C. Chancey. Retrospective analysis of injuries in underbody blast events: 2007–2010. Mil. Med. 183(1):347–352, 2018.

    Article  Google Scholar 

  29. 29.

    Yoganandan, N., A. Banerjee, F.-C. Hsu, C. R. Bass, L. Voo, F. A. Pintar, and F. S. Gayzik. Deriving injury risk curves using survival analysis from biomechanical experiments. J. Biomech. 49:3260–3267, 2016.

    Article  Google Scholar 

  30. 30.

    Yoganandan, N., S. Chirvi, L. Voo, N. DeVogel, F. A. Pintar, and A. Banerjee. Foot-ankle complex injury risk curves using calcaneus bone mineral density data. J. Mech. Behav. Biomed. Mater. 72:246–251, 2017.

    Article  Google Scholar 

  31. 31.

    Yoganandan, N., F. A. Pintar, M. Boynton, P. Begeman, P. Prasad, S. M. Kuppa, R. M. Morgan, and R. H. Eppinger. Dynamic Axial Tolerance of the Human Foot-Ankle Complex. SAE Technical Paper No. 962426, 1996.

Download references


This effort was supported by the U.S. Army Research, Development and Engineering Command (Warrior Injury Assessment Manikin study). The views expressed in this presentation are those of the authors and do not reflect official policy or position of the Department of the Army, Department of Defense or US Government.

Author information



Corresponding author

Correspondence to Liming Voo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Joel D. Stitzel oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Voo, L., Ott, K., Metzger, T. et al. Severe Calcaneus Injury Probability Curves Due to Under-Body Blast. Ann Biomed Eng (2021).

Download citation


  • Blast injury
  • Underbody blast (UBB)
  • Injury biomechanics
  • Foot and ankle
  • Calcaneus fracture
  • Injury probability
  • Lower limb