Alves da Silva, M. L., A. Martins, A. R. Costa-Pinto, V. M. Correlo, P. Sol, M. Bhattacharya, S. Faria, R. L. Reis, and N. M. Neves. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue. Eng. Regen. Med. 5(9):722–732, 2011.
CAS
PubMed
Google Scholar
Amaral, I. F., I. Neiva, F. Ferreira da Silva, S. R. Sousa, A. M. Piloto, C. D. F. Lopes, M. A. Barbosa, C. J. Kirkpatrick, and A. P. Pego. Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7-10). Acta Biomater. 9(3):5643–5652, 2013.
CAS
PubMed
Google Scholar
Amaral, I. F., S. R. Sousa, I. Neiva, L. Marcos-Silva, C. J. Kirkpatrick, M. A. Barbosa, and A. P. Pego. Kinetics and isotherm of fibronectin adsorption to three-dimensional porous chitosan scaffolds explored by 125I-radiolabelling. Biomatter. 3(2):e24791, 2013.
PubMed
PubMed Central
Google Scholar
Amaral, I. F., R. E. Unger, S. Fuchs, A. M. Mendonca, S. R. Sousa, M. A. Barbosa, A. P. Pego, and C. J. Kirkpatrick. Fibronectin-mediated endothelialisation of chitosan porous matrices. Biomaterials. 30(29):5465–5475, 2009.
CAS
PubMed
Google Scholar
Barati, D., C. Gegg, and F. Yang. Nanoparticle-mediated TGF-β release from microribbon-based hydrogels accelerates stem cell-based cartilage formation in vivo. Ann. Biomed. Eng. 48(7):1971–1981, 2020.
PubMed
Google Scholar
Bhardwaj, N., Q. T. Nguyen, A. C. Chen, D. L. Kaplan, R. L. Sah, and S. C. Kundu. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 32(25):5773–5781, 2011.
CAS
PubMed
PubMed Central
Google Scholar
Bhati, R. S., D. P. Mukherjee, K. J. McCarty, S. H. Rogers, D. F. Smith, and S. W. Shalaby. The growth of chondrocytes into a fibronectin-coated biodegradable scaffold. J. Biomed. Mater. Res. 56:74–82, 2001.
CAS
PubMed
Google Scholar
Bružauskaite, I., D. Bironaite, E. Bagdonas, and E. Bernontiene. Scaffolds and cells for tissue regeneration: different scaffold pore sizes–different cell effects. Cytotechnology. 68(3):355–369, 2016.
PubMed
Google Scholar
Caron, M. M., P. J. Emans, M. M. Coolsen, L. Voss, D. A. M. Surtel, A. Cremers, L. W. van Rhijn, and T. J. M. Weltin. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage. 20(10):1170–1178, 2012.
CAS
PubMed
Google Scholar
Cheng, A., Z. Schwartz, A. Kahn, X. Li, Z. Shao, M. Sun, Y. Ao, B. D. Boyan, and H. Chen. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng. Part B 25(1):14–29, 2019.
Google Scholar
Correia, C. R., L. S. Moreira-Teixeira, L. Moroni, R. L. Reis, C. A. van Blitterswijk, M. Karperien, and J. F. Mano. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods. 17(7):717–730, 2011.
CAS
PubMed
Google Scholar
Custódio, C. A., C. M. Alves, R. L. Reis, and J. F. Mano. Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. J. Tissue. Eng. Regen. Med. 4(4):316–323, 2010.
PubMed
Google Scholar
De Moor, L., E. Beyls, and H. Declercq. Scaffold free microtissue formation for enhanced cartilage repair. Ann. Biomed. Eng. 1:298–311, 2020.
Google Scholar
El-Ayoubi, R., C. DeGrandpré, R. Di Raddo, and A. M. Yousefi. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J. Biomater. Appl. 25:429–444, 2011.
CAS
PubMed
Google Scholar
Frazer, A., R. A. Bunning, M. Thavarajah, J. M. Seid, and R. G. Russell. Studies on type II collagen and aggrecan production in human articular chondrocytes in vitro and effects of transforming growth factor-beta and interleukin-1beta. Osteoarthritis Cartilage. 2(4):235–245, 1994.
CAS
PubMed
Google Scholar
González-García, C., D. Moratal, R. O. Oreffo, M. J. Dalby, and M. Salmerón-Sánchez. Surface mobility regulates skeletal stem cell differentiation. Integr. Biol. (Camb) 4(5):531–539, 2012.
Google Scholar
Griffon, D. J., M. R. Sedighi, D. V. Schaeffer, J. A. Eurell, and A. L. Johnson. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater. 2:313–320, 2006.
PubMed
Google Scholar
Grinnell, F., and M. K. Feld. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J. Biol. Chem. 257(9):4888–4893, 1982.
CAS
PubMed
Google Scholar
Gupta, A., S. Bhat, P. R. Jagdale, B. P. Chaudhari, L. Lidgren, K. C. Gupta, and A. Kumar. Evaluation of three-dimensional chitosan-agarose-gelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a rabbit model. Tissue Eng Part A. 20(23–24):3101–3111, 2014.
CAS
PubMed
PubMed Central
Google Scholar
Gupta, K. C., and F. H. Jabrail. Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman. Carbohydr. Res. 342(15):2244–2252, 2007.
CAS
PubMed
Google Scholar
Han, T., N. Nwe, T. Furuike, S. Tokura, and H. Tamura. Methods of N-acetylated chitosan scaffolds and its in vitro biodegradation by lysozyme. J. Biomed. Sci. Eng. 5:15–23, 2012.
CAS
Google Scholar
Hao, T., N. Wen, J. K. Cao, H. B. Wang, S. H. Lu, T. Liu, Q. X. Lin, C. M. Duan, and C. Y. Wang. The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis Cartilage. 18(2):257–265, 2010.
CAS
PubMed
Google Scholar
Homicz, M. R., S. H. Chia, B. L. Schumacher, K. Masuda, E. J. Thonar, R. L. Sah, and D. Watson. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture. Laryngoscope. 113(1):25–32, 2003.
CAS
PubMed
Google Scholar
Huanbutta, K., K. Cheewatanakornkool, K. Terada, J. Nunthanid, and P. Sriamornsak. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets. Carbohydr. Polym. 97:26–33, 2013.
CAS
PubMed
Google Scholar
Huang, Y., D. Seitz, F. König, P. E. Müller, V. Jansson, and R. M. Klar. Induction of articular chondrogenesis by chitosan/hyaluronic-acid-based biomimetic matrices using human adipose-derived stem cells. Int. J. Mol. Sci. 20(18):4487, 2019.
CAS
PubMed Central
Google Scholar
Jennings, J. A. Controlling chitosan degradation in vitro and in vivo”. In: Chitosan based biomaterials, Vol. 1, edited by J. A. Jennings, and J. D. Bumgargner. Sawston: Woodhead, 2016, pp. 159–182.
Google Scholar
Jeon, J. H., B. G. Yun, M. J. Lim, S. J. Kim, M. H. Lim, J. Y. Lim, S. H. Park, and S. W. Kim. Rapid cartilage regeneration of spheroids composed of human nasal septum-derived chondrocyte in rat osteochondral defect model. Tissue Eng. Regen. Med. 17:81–90, 2020.
CAS
PubMed
PubMed Central
Google Scholar
Jiang, T., R. James, S. G. Kumbar, and C. T. Laurencin. Chitosan as a biomaterial: Structure, properties and applications in tissue engineering and drug delivery. In: Natural and Synthetic Biomedical Polymers, edited by G. Kumbar, C. T. Laurencin, and M. Deng. Amsterdam: Elsevier Science, 2014, pp. 91–113.
Google Scholar
Kafienah, W., M. Jakob, O. Démarteau, A. Frazer, M. D. Barker, I. Martin, and A. P. Hollander. Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng. 8(5):817–826, 2002.
CAS
PubMed
Google Scholar
Kalkreuth, R. H., J. P. Krüger, S. Lau, P. Niemeyer, M. Endres, P. C. Kreuz, and C. Kaps. Fibronectin stimulates migration and proliferation, but not chondrogenic differentiation of human subchondral progenitor cells. Regen Med. 9(6):759–773, 2014.
CAS
PubMed
Google Scholar
Kean, T., and M. Thanou. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug. Deliv. Rev. 62(1):3–11, 2010.
CAS
PubMed
Google Scholar
Kruger, J. P., S. Hondke, S. Lau, and M. Endres. Characterization of plasma fibronectin for migration, proliferation, and differentiation on human articular chondrocytes. Tissue Eng. Regen. Med. 13(4):537–545, 2019.
Google Scholar
Lin, I. C., T. J. Wang, C. L. Wu, D. H. Lu, Y. R. Chen, and K. C. Yang. Chitosan-cartilage extracellular matrix hybrid scaffold induces chondrogenic differentiation to adipose-derived stem cells. Regen. Therapy. 14:238–244, 2020.
Google Scholar
Loeser, R. F. Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum. 36(8):1103–1110, 1993.
CAS
PubMed
Google Scholar
Loeser, R. F. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 39:11–16, 2014.
CAS
PubMed
PubMed Central
Google Scholar
Lu, T. J., F. Y. Chiu, H. Y. Chiu, M. C. Chang, and S. C. Hung. Chondrogenic differentiation of mesenchymal stem cells in three-dimensional chitosan film culture. Cell Transplant. 26(3):417–427, 2017.
PubMed
PubMed Central
Google Scholar
Makris, E. A., A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11(1):21–34, 2015.
CAS
PubMed
Google Scholar
Martínez, A., M. D. Blanco, N. Davidenko, and R. E. Cameron. Tailoring chitosan/collagen scaffolds for tissue engineering: effect of tissue composition and different crosslinking agents on scaffold properties. Carbohydr. Polym. 132:606–619, 2015.
PubMed
Google Scholar
Merkely, G., J. Ackermann, and C. Lattermann. Articular cartilage defects: incidence, diagnosis, and natural history. Oper. Tech. Sports Med. 26:156–161, 2018.
Google Scholar
Moulisová, V., S. Poveda-Reyes, E. Sanmartín-Masiá, L. Quintanilla-Sierra, M. Salmerón-Sánchez, and G. GallegoFerrer. Hybrid protein-glycosaminoglycan hydrogels promote chondrogenic stem cell differentiation. ACS Omega. 2(11):7609–7620, 2017.
PubMed
PubMed Central
Google Scholar
Mumme, M., A. Barbero, S. Miot, A. Wixmerten, S. Feliciano, F. Wolf, A. M. Asnaghi, D. Baumhoer, O. Bieri, M. Kretzschmar, G. Pagenstert, M. Haug, D. J. Schaefer, I. Martin, and M. Jakob. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 388(10055):1985–1994, 2016.
CAS
PubMed
Google Scholar
Mumme, M., A. Steinitz, K. M. Nuss, K. Klein, S. Feliciano, P. Kronen, M. Jakob, B. von Rechenberg, I. Martin, A. Barbero, and K. Pelttari. Regenerative potential of tissue-engineered nasal chondrocytes in goat articular cartilage defects. Tissue Eng. Part. A. 22(21–22):1286–1295, 2016.
CAS
PubMed
Google Scholar
Muzzarelli, R. A. A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 76(2):167–182, 2009.
CAS
Google Scholar
Naumann, A., N. Rotter, J. Bujía, and J. Aigner. Tissue engineering of autologous cartilage transplants for rhinology. Am J Rhinol. 12(1):59–63, 1998.
CAS
PubMed
Google Scholar
Nava, M. M., L. Draghi, C. Giordano, and R. Pietrabissa. The effect of scaffold pore size in cartilage tissue engineering. J. Appl. Biomater. Func. Mater. 14(3):223–229, 2016.
Google Scholar
Ode, A., G. N. Duda, J. D. Glaeser, G. Matziolis, S. Frauenschuh, C. Perka, C. J. Wilson, and G. Kasper. Toward biomimetic materials in bone regeneration: functional behavior of mesenchymal stem cells on a broad spectrum of extracellular matrix components. J. Biomed. Mater. Res. A. 95(4):1114–1124, 2010.
PubMed
Google Scholar
Ren, D., H. Yi, W. Wang, and X. Ma. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr. Res. 340:2403–2410, 2005.
CAS
PubMed
Google Scholar
Ressler, A., J. Ródenas-Rochina, M. Ivanković, H. Ivanković, A. Rogina, and G. Gallego Ferrer. Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Carbohydr. Polym. 197:469–477, 2018.
CAS
PubMed
Google Scholar
Rouhollahi, A., O. Ilegbusi, S. Florczyk, K. Xu, and H. Foroosh. Effect of mold geometry on pore size in freeze-cast chitosan-alginate scaffolds for tissue engineering. Ann. Biomed. Eng. 48(3):1090–1102, 2020.
PubMed
Google Scholar
Ruoslahti, E. Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev. 3(1):43–51, 1984.
CAS
PubMed
Google Scholar
Salmerón-Sánchez, M., P. Rico, D. Moratal, T. T. Lee, J. E. Schwarzbauer, and A. J. García. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials. 32(8):2099–2105, 2011.
PubMed
Google Scholar
Salzig, D., J. Leber, K. Merkewitz, M. C. Lange, N. Köster, and P. Czermak. Attachment, growth, and detachment of human mesenchymal stem cells in a chemically defined medium. Stem Cells International. 2016:5246584, 2016.
PubMed
PubMed Central
Google Scholar
Schmidt, D. R., H. Waldbeck, and W. J. Kao. Protein adsorption to biomaterials. In: Biological Interactions on Materials Surfaces: Understanding and Controlling Protein, Cell, and Tissue Responses, edited by D. A. Puleo, and R. Bizios. New York: Springer, 2009, pp. 1–18.
Google Scholar
Scotti, C., A. Osmokrovic, F. Wolf, S. Miot, G. M. Peretti, A. Barbero, and I. Martin. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng Part A. 18(3–4):362–372, 2012.
CAS
PubMed
Google Scholar
Sharifi, F., S. Irani, G. Azadegan, M. Pezeshki-Modaress, M. Zandi, and M. Saeed. Co-electrospun gelatin-chondroitin sulfate/polycaprolactone nanofibrous scaffolds for cartilage tissue engineering. Bioact. Carbohydr. Diet. Fibre 22:100215, 2020.
CAS
Google Scholar
Silva, D. S., J. A. M. Delezuk, F. A. La Porta, E. Longo, and S. P. Campana-Filho. Comparison of experimental and theoretical data on the structural and electronic characterization of chitin and chitosan. Curr. Phys. Chem. 5(3):206–213, 2016.
Google Scholar
Suh, J. K., and H. W. Matthew. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 21(24):2589–2598, 2000.
CAS
PubMed
Google Scholar
Taïhi, I., A. Nassif, J. Isaac, B. P. Fournier, and F. Ferré. Head to knee: cranial neural crest-derived cells as promising candidates for human cartilage repair. Stem Cells Int. 2019:9310318, 2019.
PubMed
PubMed Central
Google Scholar
Tao, T., Y. Li, C. Gui, Y. Ma, Y. Ge, H. Dai, K. Zhang, J. Du, Y. Gao, Y. Jiang, and J. Gui. Fibronectin enhances cartilage repair by activating progenitor cells through integrin α5β1 receptor. Tissue Eng. Part. A. 24(13–14):1112–1124, 2018.
CAS
PubMed
Google Scholar
Taraballi, F., G. Bauza, P. McCulloch, J. Harris, and E. Tasciotti. Concise review: biomimetic functionalization of biomaterials to stimulate the endogenous healing process of cartilage and bone tissue. Stem Cells Transl. Med. 6(12):2186–2196, 2017.
PubMed
PubMed Central
Google Scholar
Villa, M. M., L. Wang, D. W. Rowe, and M. Wei. Effects of cell-attachment and extracellular matrix on bone formation in vivo in collagen-hydroxyapatite scaffolds. PLoS One. 9(10):e109568, 2014.
PubMed
PubMed Central
Google Scholar
Vinatier, C., O. Gauthier, A. Fatimi, C. Merceron, M. Masson, A. Moreau, F. Moreau, B. Fellah, P. Weiss, and J. Guicheux. An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol. Bioeng. 102(4):1259–1267, 2009.
CAS
PubMed
Google Scholar
Yamane, S., N. Iwasaki, Y. Kasahara, K. Harada, T. Majima, K. Monde, S. Nishimura, and A. Minami. Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. Journal of Medical Biomaterials Research: Part A 81(3):586–593, 2007.
Google Scholar
Yao, Q., W. Li, S. Yu, L. Ma, D. Jin, A. R. Boccaccini, and Y. Liu. Multifunctional chitosan/polyvynil pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release. Mater. Sci. Eng. C. 56:473–480, 2015.
CAS
Google Scholar
Zhang, L., J. Hu, and K. A. Athanasiou. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37(1–2):1–57, 2009.
PubMed
PubMed Central
Google Scholar