Skip to main content

Characterization of Chitosan-Based Scaffolds Seeded with Sheep Nasal Chondrocytes for Cartilage Tissue Engineering

Abstract

The treatment of cartilage defect remains a challenging issue in clinical practice. Chitosan-based materials have been recognized as a suitable microenvironment for chondrocyte adhesion, proliferation and differentiation forming articular cartilage. The use of nasal chondrocytes to culture articular cartilage on an appropriate scaffold emerged as a promising novel strategy for cartilage regeneration. Beside excellent properties, chitosan lacks in biological activity, such as RGD-sequences. In this work, we have prepared pure and protein-modified chitosan scaffolds of different deacetylation degree and molecular weight as platforms for the culture of sheep nasal chondrocytes. Fibronectin (FN) was chosen as an adhesive protein for the improvement of chitosan bioactivity. Prepared scaffolds were characterised in terms of microstructure, physical and biodegradation properties, while FN interactions with different chitosans were investigated through adsorption–desorption studies. The results indicated faster enzymatic degradation of chitosan scaffolds with lower deacetylation degree, while better FN interactions with material were achieved on chitosan with higher number of amine groups. Histological and immunohistochemical analysis of in vitro engineered cartilage grafts showed presence of hyaline cartilage produced by nasal chondrocytes.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Alves da Silva, M. L., A. Martins, A. R. Costa-Pinto, V. M. Correlo, P. Sol, M. Bhattacharya, S. Faria, R. L. Reis, and N. M. Neves. Chondrogenic differentiation of human bone marrow mesenchymal stem cells in chitosan-based scaffolds using a flow-perfusion bioreactor. J. Tissue. Eng. Regen. Med. 5(9):722–732, 2011.

    CAS  PubMed  Google Scholar 

  2. Amaral, I. F., I. Neiva, F. Ferreira da Silva, S. R. Sousa, A. M. Piloto, C. D. F. Lopes, M. A. Barbosa, C. J. Kirkpatrick, and A. P. Pego. Endothelialization of chitosan porous conduits via immobilization of a recombinant fibronectin fragment (rhFNIII7-10). Acta Biomater. 9(3):5643–5652, 2013.

    CAS  PubMed  Google Scholar 

  3. Amaral, I. F., S. R. Sousa, I. Neiva, L. Marcos-Silva, C. J. Kirkpatrick, M. A. Barbosa, and A. P. Pego. Kinetics and isotherm of fibronectin adsorption to three-dimensional porous chitosan scaffolds explored by 125I-radiolabelling. Biomatter. 3(2):e24791, 2013.

    PubMed  PubMed Central  Google Scholar 

  4. Amaral, I. F., R. E. Unger, S. Fuchs, A. M. Mendonca, S. R. Sousa, M. A. Barbosa, A. P. Pego, and C. J. Kirkpatrick. Fibronectin-mediated endothelialisation of chitosan porous matrices. Biomaterials. 30(29):5465–5475, 2009.

    CAS  PubMed  Google Scholar 

  5. Barati, D., C. Gegg, and F. Yang. Nanoparticle-mediated TGF-β release from microribbon-based hydrogels accelerates stem cell-based cartilage formation in vivo. Ann. Biomed. Eng. 48(7):1971–1981, 2020.

    PubMed  Google Scholar 

  6. Bhardwaj, N., Q. T. Nguyen, A. C. Chen, D. L. Kaplan, R. L. Sah, and S. C. Kundu. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials. 32(25):5773–5781, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhati, R. S., D. P. Mukherjee, K. J. McCarty, S. H. Rogers, D. F. Smith, and S. W. Shalaby. The growth of chondrocytes into a fibronectin-coated biodegradable scaffold. J. Biomed. Mater. Res. 56:74–82, 2001.

    CAS  PubMed  Google Scholar 

  8. Bružauskaite, I., D. Bironaite, E. Bagdonas, and E. Bernontiene. Scaffolds and cells for tissue regeneration: different scaffold pore sizes–different cell effects. Cytotechnology. 68(3):355–369, 2016.

    PubMed  Google Scholar 

  9. Caron, M. M., P. J. Emans, M. M. Coolsen, L. Voss, D. A. M. Surtel, A. Cremers, L. W. van Rhijn, and T. J. M. Weltin. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures. Osteoarthritis Cartilage. 20(10):1170–1178, 2012.

    CAS  PubMed  Google Scholar 

  10. Cheng, A., Z. Schwartz, A. Kahn, X. Li, Z. Shao, M. Sun, Y. Ao, B. D. Boyan, and H. Chen. Advances in porous scaffold design for bone and cartilage tissue engineering and regeneration. Tissue Eng. Part B 25(1):14–29, 2019.

    Google Scholar 

  11. Correia, C. R., L. S. Moreira-Teixeira, L. Moroni, R. L. Reis, C. A. van Blitterswijk, M. Karperien, and J. F. Mano. Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng Part C Methods. 17(7):717–730, 2011.

    CAS  PubMed  Google Scholar 

  12. Custódio, C. A., C. M. Alves, R. L. Reis, and J. F. Mano. Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. J. Tissue. Eng. Regen. Med. 4(4):316–323, 2010.

    PubMed  Google Scholar 

  13. De Moor, L., E. Beyls, and H. Declercq. Scaffold free microtissue formation for enhanced cartilage repair. Ann. Biomed. Eng. 1:298–311, 2020.

    Google Scholar 

  14. El-Ayoubi, R., C. DeGrandpré, R. Di Raddo, and A. M. Yousefi. Design and dynamic culture of 3D-scaffolds for cartilage tissue engineering. J. Biomater. Appl. 25:429–444, 2011.

    CAS  PubMed  Google Scholar 

  15. Frazer, A., R. A. Bunning, M. Thavarajah, J. M. Seid, and R. G. Russell. Studies on type II collagen and aggrecan production in human articular chondrocytes in vitro and effects of transforming growth factor-beta and interleukin-1beta. Osteoarthritis Cartilage. 2(4):235–245, 1994.

    CAS  PubMed  Google Scholar 

  16. González-García, C., D. Moratal, R. O. Oreffo, M. J. Dalby, and M. Salmerón-Sánchez. Surface mobility regulates skeletal stem cell differentiation. Integr. Biol. (Camb) 4(5):531–539, 2012.

    Google Scholar 

  17. Griffon, D. J., M. R. Sedighi, D. V. Schaeffer, J. A. Eurell, and A. L. Johnson. Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater. 2:313–320, 2006.

    PubMed  Google Scholar 

  18. Grinnell, F., and M. K. Feld. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J. Biol. Chem. 257(9):4888–4893, 1982.

    CAS  PubMed  Google Scholar 

  19. Gupta, A., S. Bhat, P. R. Jagdale, B. P. Chaudhari, L. Lidgren, K. C. Gupta, and A. Kumar. Evaluation of three-dimensional chitosan-agarose-gelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a rabbit model. Tissue Eng Part A. 20(23–24):3101–3111, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta, K. C., and F. H. Jabrail. Glutaraldehyde cross-linked chitosan microspheres for controlled release of centchroman. Carbohydr. Res. 342(15):2244–2252, 2007.

    CAS  PubMed  Google Scholar 

  21. Han, T., N. Nwe, T. Furuike, S. Tokura, and H. Tamura. Methods of N-acetylated chitosan scaffolds and its in vitro biodegradation by lysozyme. J. Biomed. Sci. Eng. 5:15–23, 2012.

    CAS  Google Scholar 

  22. Hao, T., N. Wen, J. K. Cao, H. B. Wang, S. H. Lu, T. Liu, Q. X. Lin, C. M. Duan, and C. Y. Wang. The support of matrix accumulation and the promotion of sheep articular cartilage defects repair in vivo by chitosan hydrogels. Osteoarthritis Cartilage. 18(2):257–265, 2010.

    CAS  PubMed  Google Scholar 

  23. Homicz, M. R., S. H. Chia, B. L. Schumacher, K. Masuda, E. J. Thonar, R. L. Sah, and D. Watson. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture. Laryngoscope. 113(1):25–32, 2003.

    CAS  PubMed  Google Scholar 

  24. Huanbutta, K., K. Cheewatanakornkool, K. Terada, J. Nunthanid, and P. Sriamornsak. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets. Carbohydr. Polym. 97:26–33, 2013.

    CAS  PubMed  Google Scholar 

  25. Huang, Y., D. Seitz, F. König, P. E. Müller, V. Jansson, and R. M. Klar. Induction of articular chondrogenesis by chitosan/hyaluronic-acid-based biomimetic matrices using human adipose-derived stem cells. Int. J. Mol. Sci. 20(18):4487, 2019.

    CAS  PubMed Central  Google Scholar 

  26. Jennings, J. A. Controlling chitosan degradation in vitro and in vivo”. In: Chitosan based biomaterials, Vol. 1, edited by J. A. Jennings, and J. D. Bumgargner. Sawston: Woodhead, 2016, pp. 159–182.

    Google Scholar 

  27. Jeon, J. H., B. G. Yun, M. J. Lim, S. J. Kim, M. H. Lim, J. Y. Lim, S. H. Park, and S. W. Kim. Rapid cartilage regeneration of spheroids composed of human nasal septum-derived chondrocyte in rat osteochondral defect model. Tissue Eng. Regen. Med. 17:81–90, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiang, T., R. James, S. G. Kumbar, and C. T. Laurencin. Chitosan as a biomaterial: Structure, properties and applications in tissue engineering and drug delivery. In: Natural and Synthetic Biomedical Polymers, edited by G. Kumbar, C. T. Laurencin, and M. Deng. Amsterdam: Elsevier Science, 2014, pp. 91–113.

    Google Scholar 

  29. Kafienah, W., M. Jakob, O. Démarteau, A. Frazer, M. D. Barker, I. Martin, and A. P. Hollander. Three-dimensional tissue engineering of hyaline cartilage: comparison of adult nasal and articular chondrocytes. Tissue Eng. 8(5):817–826, 2002.

    CAS  PubMed  Google Scholar 

  30. Kalkreuth, R. H., J. P. Krüger, S. Lau, P. Niemeyer, M. Endres, P. C. Kreuz, and C. Kaps. Fibronectin stimulates migration and proliferation, but not chondrogenic differentiation of human subchondral progenitor cells. Regen Med. 9(6):759–773, 2014.

    CAS  PubMed  Google Scholar 

  31. Kean, T., and M. Thanou. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug. Deliv. Rev. 62(1):3–11, 2010.

    CAS  PubMed  Google Scholar 

  32. Kruger, J. P., S. Hondke, S. Lau, and M. Endres. Characterization of plasma fibronectin for migration, proliferation, and differentiation on human articular chondrocytes. Tissue Eng. Regen. Med. 13(4):537–545, 2019.

    Google Scholar 

  33. Lin, I. C., T. J. Wang, C. L. Wu, D. H. Lu, Y. R. Chen, and K. C. Yang. Chitosan-cartilage extracellular matrix hybrid scaffold induces chondrogenic differentiation to adipose-derived stem cells. Regen. Therapy. 14:238–244, 2020.

    Google Scholar 

  34. Loeser, R. F. Integrin-mediated attachment of articular chondrocytes to extracellular matrix proteins. Arthritis Rheum. 36(8):1103–1110, 1993.

    CAS  PubMed  Google Scholar 

  35. Loeser, R. F. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix Biol. 39:11–16, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, T. J., F. Y. Chiu, H. Y. Chiu, M. C. Chang, and S. C. Hung. Chondrogenic differentiation of mesenchymal stem cells in three-dimensional chitosan film culture. Cell Transplant. 26(3):417–427, 2017.

    PubMed  PubMed Central  Google Scholar 

  37. Makris, E. A., A. H. Gomoll, K. N. Malizos, J. C. Hu, and K. A. Athanasiou. Repair and tissue engineering techniques for articular cartilage. Nat. Rev. Rheumatol. 11(1):21–34, 2015.

    CAS  PubMed  Google Scholar 

  38. Martínez, A., M. D. Blanco, N. Davidenko, and R. E. Cameron. Tailoring chitosan/collagen scaffolds for tissue engineering: effect of tissue composition and different crosslinking agents on scaffold properties. Carbohydr. Polym. 132:606–619, 2015.

    PubMed  Google Scholar 

  39. Merkely, G., J. Ackermann, and C. Lattermann. Articular cartilage defects: incidence, diagnosis, and natural history. Oper. Tech. Sports Med. 26:156–161, 2018.

    Google Scholar 

  40. Moulisová, V., S. Poveda-Reyes, E. Sanmartín-Masiá, L. Quintanilla-Sierra, M. Salmerón-Sánchez, and G. GallegoFerrer. Hybrid protein-glycosaminoglycan hydrogels promote chondrogenic stem cell differentiation. ACS Omega. 2(11):7609–7620, 2017.

    PubMed  PubMed Central  Google Scholar 

  41. Mumme, M., A. Barbero, S. Miot, A. Wixmerten, S. Feliciano, F. Wolf, A. M. Asnaghi, D. Baumhoer, O. Bieri, M. Kretzschmar, G. Pagenstert, M. Haug, D. J. Schaefer, I. Martin, and M. Jakob. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet. 388(10055):1985–1994, 2016.

    CAS  PubMed  Google Scholar 

  42. Mumme, M., A. Steinitz, K. M. Nuss, K. Klein, S. Feliciano, P. Kronen, M. Jakob, B. von Rechenberg, I. Martin, A. Barbero, and K. Pelttari. Regenerative potential of tissue-engineered nasal chondrocytes in goat articular cartilage defects. Tissue Eng. Part. A. 22(21–22):1286–1295, 2016.

    CAS  PubMed  Google Scholar 

  43. Muzzarelli, R. A. A. Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym. 76(2):167–182, 2009.

    CAS  Google Scholar 

  44. Naumann, A., N. Rotter, J. Bujía, and J. Aigner. Tissue engineering of autologous cartilage transplants for rhinology. Am J Rhinol. 12(1):59–63, 1998.

    CAS  PubMed  Google Scholar 

  45. Nava, M. M., L. Draghi, C. Giordano, and R. Pietrabissa. The effect of scaffold pore size in cartilage tissue engineering. J. Appl. Biomater. Func. Mater. 14(3):223–229, 2016.

    Google Scholar 

  46. Ode, A., G. N. Duda, J. D. Glaeser, G. Matziolis, S. Frauenschuh, C. Perka, C. J. Wilson, and G. Kasper. Toward biomimetic materials in bone regeneration: functional behavior of mesenchymal stem cells on a broad spectrum of extracellular matrix components. J. Biomed. Mater. Res. A. 95(4):1114–1124, 2010.

    PubMed  Google Scholar 

  47. Ren, D., H. Yi, W. Wang, and X. Ma. The enzymatic degradation and swelling properties of chitosan matrices with different degrees of N-acetylation. Carbohydr. Res. 340:2403–2410, 2005.

    CAS  PubMed  Google Scholar 

  48. Ressler, A., J. Ródenas-Rochina, M. Ivanković, H. Ivanković, A. Rogina, and G. Gallego Ferrer. Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Carbohydr. Polym. 197:469–477, 2018.

    CAS  PubMed  Google Scholar 

  49. Rouhollahi, A., O. Ilegbusi, S. Florczyk, K. Xu, and H. Foroosh. Effect of mold geometry on pore size in freeze-cast chitosan-alginate scaffolds for tissue engineering. Ann. Biomed. Eng. 48(3):1090–1102, 2020.

    PubMed  Google Scholar 

  50. Ruoslahti, E. Fibronectin in cell adhesion and invasion. Cancer Metastasis Rev. 3(1):43–51, 1984.

    CAS  PubMed  Google Scholar 

  51. Salmerón-Sánchez, M., P. Rico, D. Moratal, T. T. Lee, J. E. Schwarzbauer, and A. J. García. Role of material-driven fibronectin fibrillogenesis in cell differentiation. Biomaterials. 32(8):2099–2105, 2011.

    PubMed  Google Scholar 

  52. Salzig, D., J. Leber, K. Merkewitz, M. C. Lange, N. Köster, and P. Czermak. Attachment, growth, and detachment of human mesenchymal stem cells in a chemically defined medium. Stem Cells International. 2016:5246584, 2016.

    PubMed  PubMed Central  Google Scholar 

  53. Schmidt, D. R., H. Waldbeck, and W. J. Kao. Protein adsorption to biomaterials. In: Biological Interactions on Materials Surfaces: Understanding and Controlling Protein, Cell, and Tissue Responses, edited by D. A. Puleo, and R. Bizios. New York: Springer, 2009, pp. 1–18.

    Google Scholar 

  54. Scotti, C., A. Osmokrovic, F. Wolf, S. Miot, G. M. Peretti, A. Barbero, and I. Martin. Response of human engineered cartilage based on articular or nasal chondrocytes to interleukin-1β and low oxygen. Tissue Eng Part A. 18(3–4):362–372, 2012.

    CAS  PubMed  Google Scholar 

  55. Sharifi, F., S. Irani, G. Azadegan, M. Pezeshki-Modaress, M. Zandi, and M. Saeed. Co-electrospun gelatin-chondroitin sulfate/polycaprolactone nanofibrous scaffolds for cartilage tissue engineering. Bioact. Carbohydr. Diet. Fibre 22:100215, 2020.

    CAS  Google Scholar 

  56. Silva, D. S., J. A. M. Delezuk, F. A. La Porta, E. Longo, and S. P. Campana-Filho. Comparison of experimental and theoretical data on the structural and electronic characterization of chitin and chitosan. Curr. Phys. Chem. 5(3):206–213, 2016.

    Google Scholar 

  57. Suh, J. K., and H. W. Matthew. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 21(24):2589–2598, 2000.

    CAS  PubMed  Google Scholar 

  58. Taïhi, I., A. Nassif, J. Isaac, B. P. Fournier, and F. Ferré. Head to knee: cranial neural crest-derived cells as promising candidates for human cartilage repair. Stem Cells Int. 2019:9310318, 2019.

    PubMed  PubMed Central  Google Scholar 

  59. Tao, T., Y. Li, C. Gui, Y. Ma, Y. Ge, H. Dai, K. Zhang, J. Du, Y. Gao, Y. Jiang, and J. Gui. Fibronectin enhances cartilage repair by activating progenitor cells through integrin α5β1 receptor. Tissue Eng. Part. A. 24(13–14):1112–1124, 2018.

    CAS  PubMed  Google Scholar 

  60. Taraballi, F., G. Bauza, P. McCulloch, J. Harris, and E. Tasciotti. Concise review: biomimetic functionalization of biomaterials to stimulate the endogenous healing process of cartilage and bone tissue. Stem Cells Transl. Med. 6(12):2186–2196, 2017.

    PubMed  PubMed Central  Google Scholar 

  61. Villa, M. M., L. Wang, D. W. Rowe, and M. Wei. Effects of cell-attachment and extracellular matrix on bone formation in vivo in collagen-hydroxyapatite scaffolds. PLoS One. 9(10):e109568, 2014.

    PubMed  PubMed Central  Google Scholar 

  62. Vinatier, C., O. Gauthier, A. Fatimi, C. Merceron, M. Masson, A. Moreau, F. Moreau, B. Fellah, P. Weiss, and J. Guicheux. An injectable cellulose-based hydrogel for the transfer of autologous nasal chondrocytes in articular cartilage defects. Biotechnol. Bioeng. 102(4):1259–1267, 2009.

    CAS  PubMed  Google Scholar 

  63. Yamane, S., N. Iwasaki, Y. Kasahara, K. Harada, T. Majima, K. Monde, S. Nishimura, and A. Minami. Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. Journal of Medical Biomaterials Research: Part A 81(3):586–593, 2007.

    Google Scholar 

  64. Yao, Q., W. Li, S. Yu, L. Ma, D. Jin, A. R. Boccaccini, and Y. Liu. Multifunctional chitosan/polyvynil pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release. Mater. Sci. Eng. C. 56:473–480, 2015.

    CAS  Google Scholar 

  65. Zhang, L., J. Hu, and K. A. Athanasiou. The role of tissue engineering in articular cartilage repair and regeneration. Crit. Rev. Biomed. Eng. 37(1–2):1–57, 2009.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Croatian Science Foundation under the project IP-2014-09-3752, the European Union’s Horizon 2020 research and innovation program under grant agreement No 681103, BioChip.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anamarija Rogina or Maja Pušić.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rogina, A., Pušić, M., Štefan, L. et al. Characterization of Chitosan-Based Scaffolds Seeded with Sheep Nasal Chondrocytes for Cartilage Tissue Engineering. Ann Biomed Eng 49, 1572–1586 (2021). https://doi.org/10.1007/s10439-020-02712-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02712-9

Keywords

  • Chitosan
  • Biodegradation
  • Fibronectin
  • Nasal chondrocytes
  • Hyaline cartilage