Skip to main content
Log in

Boundary-Condition Analysis of an Idealized Left Atrium Model

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The most common type of cardiac arrhythmia is atrial fibrillation (AF), which is characterised by irregular and ineffective atrial contraction. This behaviour results into the formation of thrombi, mainly in the left atrial appendage (LAA), responsible for thromboembolic events. Very different approaches are considered as therapy for AF patients. Therefore, it is necessary to yield insight into the flow physics of thrombi formation to determine which is the most appropriate strategy in each case. Computational Fluid Dynamics (CFD) has proven successful in getting a better understanding of the thrombosis phenomenon, but it still requires validation by means of accurate flow field in vivo atrial measurements. As an alternative, in this paper it is proposed an in vitro flow validation, consisting in an idealised model that captures the main flow features observed in the human LA which, once combined with Particle Image Velocimetry (PIV) measurements, provides readily accessible, easy to emulate, detailed velocity fields. These results have been used to validate our laminar and Large Eddy Simulation (LES) simulations. Besides, we have run a parametric study of different boundary conditions sets previously employed in the literature. These data can be used as a benchmark for further development of LA CFD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Aguado, A. M., A. L. Olivares, C. Yaguë, E. Silva, M. Nuñez-Garciá, Á. Fernandez-Quilez, J. Mill, I. Genua, D. Arzamendi, T. De Potter, X. Freixa, and O. Camara. In silico optimization of left atrial appendage occluder implantation using interactive and modeling tools. Front. Physiol. 10:237, 2019.

    Article  Google Scholar 

  2. Al-Saady, N. M., O. A. Obel, and A. J. Camm. Left atrial appendage: structure, function, and role in thromboembolism. Heart 82:547–554, 1999.

    Article  CAS  Google Scholar 

  3. Bai, W., Z. Chen, H. Tang, H. Wang, W. Cheng, and L. Rao. Assessment of the left atrial appendage structure and morphology: comparison of real-time three-dimensional transesophageal echocardiography and computed tomography. Int. J. Cardiovasc. Imaging 33:623–633, 2017.

    Article  Google Scholar 

  4. Bermejo, J., P. Martínez-Legazpi, and J. C. del Álamo. The clinical assessment of intraventricular flows. Annu. Rev. Fluid Mech. 47:315–342, 2015.

    Article  Google Scholar 

  5. Biase, L. D., A. Natale, and J. Romero. Thrombogenic and arrhythmogenic roles of the left atrial appendage in atrial fibrillation clinical implications. Circulation 138:2036–2050, 2018.

    Article  Google Scholar 

  6. Bosi, G. M., A. Cook, R. Rai, L. J. Menezes, S. Schievano, R. Torii, and G. Burriesci. Computational fluid dynamic analysis of the left atrial appendage to predict thrombosis risk. Front. Cardiovasc. Med. 5:1–8, 2018.

    Article  Google Scholar 

  7. Buchmann, N. A., C. Atkinson, M. C. Jeremy, and J. Soria. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp. Fluids 50:1131–1151, 2011.

    Article  CAS  Google Scholar 

  8. Cha, Y.-M., M. M. Redfield, W.-K. Shen, and B. J. Gersh. Atrial fibrillation and ventricular dysfunction: a vicious electromechanical cycle. Circulation 109:2839–2843, 2004.

    Article  Google Scholar 

  9. Chanda, A. and J. P. Reilly. Left atrial appendage occlusion for stroke prevention. Prog. Cardiovasc. Dis. 59:626–635, 2017.

    Article  Google Scholar 

  10. Charonko, J. J., P. P. Vlachos. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio. Meas. Sci. Technol. 24, 2013.

  11. Chnafa, C., S. Mendez, and F. Nicoud. Image-based large-eddy simulation in a realistic left heart. Comput. Fluids 94:173–187, 2014.

    Article  Google Scholar 

  12. Christiaens, L., N. Varroud-Vial, P. Ardilouze, S. Ragot, J. Mergy, B. Bonnet, D. Herpin, and J. Allal. Real three-dimensional assessment of left atrial and left atrial appendage volumes by 64-slice spiral computed tomography in individuals with or without cardiovascular disease. Int. J. Cardiol. 140:189–196, 2010.

    Article  Google Scholar 

  13. Dahl, S. K., E. Thomassen, L. R. Hellevik, and B. Skallerud. Impact of Pulmonary Venous Locations on the Intra-Atrial Flow and the Mitral Valve Plane Velocity Profile. Cardiovasc. Eng. Technol. 3:269–281, 2012.

    Article  Google Scholar 

  14. Di Biase, L., P. Santangeli, M. Anselmino, P. Mohanty, I. Salvetti, S. Gili, R. Horton, J. E. Sanchez, R. Bai, S. Mohanty, A. Pump, M. CerecedaBrantes, G. J. Gallinghouse, J. D. Burkhardt, F. Cesarani, M. Scaglione, A. Natale, and F. Gaita. Does the left atrial appendage morphology correlate with the risk of stroke in patients with atrial fibrillation? Results from a multicenter study. J. Am. Coll. Cardiol. 60:531–538, 2012.

    Article  Google Scholar 

  15. Fyrenius, A., L. Wigström, T. Ebbers, M. Karlsson, J. Engvall, and A. F. Bolger. Three dimensional flow in the human left atrium. Heart 86:448–455, 2001.

    Article  CAS  Google Scholar 

  16. García-Isla, G., A. L. Olivares, E. Silva, M. Nuñez-Garcia, C. Butakoff, D. Sanchez-Quintana, H. G. Morales, X. Freixa, J. Noailly, T. De Potter, and O. Camara. Sensitivity analysis of geometrical parameters to study haemodynamics and thrombus formation in the left atrial appendage. Int. J. Numer. Methods Biomed. Eng. 34:e3100, 2018.

    Article  Google Scholar 

  17. Go, A. S., E. M. Hylek, K. A. Phillips, Y. Chang, L. E. Henault, J. V. Selby, and D. E. Singer. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the anticoagulation and risk factors in atrial fibrillation study. JAMA 285:2370–2375, 2001.

    Article  CAS  Google Scholar 

  18. Holmes, D. R., D. R. Lakkireddy, R. P. Whitlock, R. Waksman, and M. J. Mack. Left atrial appendage occlusion: opportunities and challenges. J. Am. Coll. Cardiol. 63:291–298, 2014.

    Article  Google Scholar 

  19. Lantz, J., V. Gupta, L. Henriksson, M. Karlsson, A. Persson, C. J. Carlhäll, and T. Ebbers. Impact of pulmonary venous inflow on cardiac flow simulations: comparison with in vivo 4D Flow MRI. Ann. Biomed. Eng. 47:413–424, 2019.

    Article  Google Scholar 

  20. Lip, G. Y., N. Al-Saady, J. Jin, M. Sun, M. Melino, S. M. Winters, D. Zamoryakhin, and A. Goette. Anticoagulation control in warfarin-treated patients undergoing cardioversion of atrial fibrillation (from the edoxaban versus enoxaparin-warfarin in patients undergoing cardioversion of atrial fibrillation trial). Am. J. Cardiol. 120:792–796, 2017.

    Article  CAS  Google Scholar 

  21. Loudon, C. and A. Tordesillas. The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J. Theor. Biol. 191:63–78, 1998.

    Article  CAS  Google Scholar 

  22. Lupercio, F., J. CarlosRuiz, D. F. Briceno, J. Romero, P. A. Villablanca, C. Berardi, R. Faillace, A. Krumerman, J. D. Fisher, K. Ferrick, M. Garcia, A. Natale, and L. Di Biase. Left atrial appendage morphology assessment for risk stratification of embolic stroke in patients with atrial fibrillation: a meta-analysis. Heart Rhythm 13:1402–1409, 2016.

    Article  Google Scholar 

  23. Masci, A., L. Barone, L. Dedè, M. Fedele, C. Tomasi, A. Quarteroni, and C. Corsi. The impact of left atrium appendage morphology on stroke risk assessment in atrial fibrillation: a computational fluid dynamics study. Front. Physiol. 9:1–11, 2019.

    Article  Google Scholar 

  24. Otani, T., A. Al-Issa, A. Pourmorteza, E. R. McVeigh, S. Wada, and H. Ashikaga. A computational framework for personalized blood flow analysis in the human left atrium. Ann. Biomed. Eng. 44:3284–3294, 2016.

    Article  Google Scholar 

  25. Pellman, J. and F. Sheikh. Atrial fibrillation: mechanisms, therapeutics, and future directions. Compr. Physiol. 5:649–665, 2015.

    Article  Google Scholar 

  26. Singh, S. M., A. Micieli, and H. C. Wijeysundera. Economic evaluation of percutaneous left atrial appendage occlusion, dabigatran, and warfarin for stroke prevention in patients with nonvalvular atrial fibrillation. Circulation 127:2414–2423, 2013.

    Article  CAS  Google Scholar 

  27. Vedula, V., R. George, L. Younes, and R. Mittal. Hemodynamics in the left atrium and its effect on ventricular flow patterns. J. Biomech. Eng. 137:1–8, 2015.

    Article  Google Scholar 

  28. Willert, C. E. and M. Gharib. Digital particle image velocimetry. Exp. Fluids 10:181–193, 1991.

    Article  Google Scholar 

  29. Zhong, L., J. M. Zhang, B. Su, R. S. Tan, J. C. Allen, and G. S. Kassab. Application of patient-specific computational fluid dynamics in coronary and intra-cardiac flow simulations: challenges and opportunities. Front. Physiol. 9:742, 2018.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministerio de Ciencia, Innovación y Universidades of Spain under contract DPI 2017-83911-R and by Junta de Castilla y León under Project “Proyecto de apoyo a GIR 2018” with reference VA081G18. We want to show our gratitude to the Programa Propio—Universidad Politécnica de Madrid, specially to its predoctoral contract Grants. We would also thank Alberto Pozo Álvarez who collaborated in early versions of this work and the CeSViMa UPM project for its computational resources.

Conflict of interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Dueñas-Pamplona.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dueñas-Pamplona, J., Sierra-Pallares, J., García, J. et al. Boundary-Condition Analysis of an Idealized Left Atrium Model. Ann Biomed Eng 49, 1507–1520 (2021). https://doi.org/10.1007/s10439-020-02702-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02702-x

Keywords

Navigation