Abstract
Bone lengthening and bone transport are regeneration processes that commonly rely on distraction osteogenesis, a widely accepted surgical procedure to deal with numerous bony pathologies. Despite the extensive study in the literature of the influence of biomechanical factors, a lack of knowledge about their mechanobiological differences prevents a clinical particularization. Bone lengthening treatments were performed on sheep metatarsus by reproducing the surgical and biomechanical protocol of previous bone transport experiments. Several in vivo monitoring techniques were employed to build an exhaustive comparison: gait analysis, radiographic and CT assessment, force measures through the fixation, or mechanical characterization of the new tissue. A significant initial loss of the bearing capacity, quantified by the ground reaction forces and the limb contact time with the ground, is suffered by the bone lengthening specimens. The potential effects of this anomaly on the musculoskeletal force distribution and the evolution of the bone callus elastic modulus over time are also analyzed. Imaging techniques also seem to reveal lower bone volume in the bone lengthening callus than in the bone transport one, but an equivalent mineralization rate. The simultaneous quantification of biological and mechanical parameters provides valuable information for the daily clinical routine and numerical tools development.
Similar content being viewed by others
References
Aarnes, G. T., H. Steen, P. Ludvigsen, L. P. Kristiansen, and O. Reikerås. High frequency distraction improves tissue adaptation during leg lengthening in humans. J Orthop. Res. 20:789–792, 2002.
Aarnes, G. T., H. Steen, P. Ludvigsen, N. A. Waanders, R. Huiskes, and S. A. Goldstein. In vivo assessment of regenerate axial stiffness in distraction osteogenesis. J. Orthop. Res. 23:494–498, 2005.
Augat, P., E. F. Morgan, T. J. Lujan, T. J. MacGillivray, and W. H. Cheung. Imaging techniques for the assessment of fracture repair. Injury. 45(Suppl 2):S16–S22, 2014.
Blázquez-Carmona, P., J. Mora-Macías, J. A. Sanz-Herrera, J. Morgaz, R. Navarrete-Calvo, J. Domínguez, and E. Reina-Romo. Mechanical influence of surrounding soft tissue on bone regeneration processes: a bone lengthening study. Ann. Biomed. Eng. 2020. https://doi.org/10.1007/s10439-020-02592-z.
Blázquez-Carmona, P., M. Sanchez-Raya, J. Mora-Macías, J. A. Gómez-Galán, J. Domínguez, and E. Reina-Romo. Real-time wireless platform for in vivo monitoring of bone regeneration. Sensors. 20:4591, 2020.
Breik, O., D. Tivey, K. Umapathysivam, and P. Anderson. Does the rate of distraction or type of distractor affect the outcome of mandibular distraction in children with micrognathia? J. Oral Maxillofac. Surg. 74:1441–1453, 2016.
Brunner, U. H., J. Cordey, L. Schweiberer, and S. M. Perren. Force required for bone segment transport in the treatment of large bone defects using medullary nail fixation. Clin. Orthop. Relat. Res. 301:147–155, 1994.
Claes, L. E., and J. L. Cunningham. Monitoring the mechanical properties of healing bone. Clin. Orthop. Relat. Res. 467:1964–1971, 2009.
Claes, L., J. Laule, K. Wenger, G. Suger, U. Liener, and L. Kinzl. The influence of the fixator on maturation of the callus after segmental transport. J. Bone Joint Surg. Br. 82:142–148, 2000.
Corrales, L. A., S. Morshed, M. Bhandari, and T. Miclau, III. Variability in the assessment of fracture-healing in orthopaedic trauma studies. J. Bone Joint Surg. Am. 90:1862–1868, 2008.
Duda, G. N., K. Eckert-Hübner, R. Sokiranski, A. Kreutner, R. Miller, and L. Claes. Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep. J. Biomech. 31:201–210, 1998.
Dwyer, J. S., P. J. Owen, G. A. Evans, J. H. Kuiper, and J. B. Richardson. Stiffness measurements to assess healing during leg lengthening. A preliminary report. J. Bone Joint Surg. Br. 78:286–289, 1996.
Fischer, S., A. Anders, I. Nolte, and N. Schilling. Compensatory load redistribution in walking and trotting dogs with hind limb lameness. Vet. J. 197:746–752, 2013.
Fisher, J. S., J. J. Kazam, D. Fufa, and R. J. Bartolotta. Radiologic evaluation of fracture healing. Skeletal Radiol. 48:349–361, 2019.
Floerkemeier, T., F. Thorey, C. Hurschler, M. Wellmann, F. Witte, and H. Windhagen. Stiffness of callus tissue during distraction osteogenesis. Orthop. Traumatol. Surg. Res. 96:155–160, 2010.
Forriol, F., L. Denaro, U. G. Longo, H. Taira, N. Maffulli, and V. Denaro. Bone lengthening osteogenesis, a combination of intramembranous and endochondral ossification: an experimental study in sheep. Strategies Trauma Limb Reconstr. 5:71–78, 2010.
Fürmetz, J., C. Soo, W. Behrendt, P. H. Thaller, H. Siekmann, J. Böhme, and C. Josten. Bone transport for limb reconstruction following severe tibial fractures. Orthop. Rev. 8:6384, 2016.
Galardi, G., G. Comi, L. Lozza, P. Marchettini, M. Novarina, R. Facchini, and A. Paronzini. Peripheral nerve damage during limb lengthening. Neurophysiology in five cases of bilateral tibial lengthening. J. Bone Jt Surg. Br. 72:121–124, 1990.
Grasa, J., M. J. Gómez-Benito, L. A. González-Torres, D. Asiaín, F. Quero, and J. M. García-Aznar. Monitoring in vivo load transmission through an external fixator. Ann. Biomed. Eng. 38:605–612, 2010.
Hasler, C. C., and A. H. Krieg. Current concepts of leg lengthening. J. Child. Orthop. 6:89–104, 2012.
Hayashi, K., I. Yoshioka, A. Khanal, N. Furuta, K. Tominaga, and J. Fukuda. Effects of latency on bone formation during consolidation period of rabbit mandibular distraction. Asian J. Oral Maxillofac. Surg. 20:5–11, 2008.
Jacobs, B. Y., H. E. Kloefkorn, and K. D. Allen. Gait analysis methods for rodent models of osteoarthritis. Curr. Pain Headache Rep. 18:456, 2014.
Kessler, P., F. W. Neukam, and J. Wiltfang. Effects of distraction forces and frequency of distraction on bony regeneration. Br. J. Oral. Maxillofac. Surg. 43:392–398, 2005.
Koczewski, P., F. Urban, and M. Józwiak. Analysis of some gait parameters at different stages of leg lengthening using the Ilizarov technique. Chir Narzadow Ruchu Orthop. Pol. 69:393–397, 2004.
Krizsan-Agbas, D., M. K. Winter, L. S. Eggimann, J. Meriwether, N. E. Berman, P. G. Smith, and K. E. McCarson. Gait analysis at multiple speeds reveals differential functional and structural outcomes in response to graded spinal cord injury. J. Neurotrauma. 31:846–856, 2014.
Leong, P. L., and E. F. Morgan. Measurement of fracture callus material properties via nanoindentation. Acta Biomater. 4:1569–1575, 2008.
Leong, P. L., and E. F. Morgan. Correlations between indentation modulus and mineral density in bone-fracture calluses. Integr. Comp. Biol. 49:59–68, 2009.
Manjubala, I., Y. Liu, D. R. Epari, P. Roschger, H. Schell, P. Fratzl, and G. N. Duda. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone. 45:185–192, 2009.
Mattei, L., F. Di Puccio, and S. Marchetti. In vivo impact testing on a lengthened femur with external fixation: a future option for non-invasive monitoring of fracture healing? J. R. Soc. Interface. 15:20180068, 2018.
Mora-Macías, J., P. García-Florencio, A. Pajares, P. Miranda, J. Domínguez, and E. Reina-Romo. Elastic modulus of woven bone: correlation with evolution of porosity and x-ray greyscale. Ann. Biomed. Eng. 2020. https://doi.org/10.1007/s10439-020-02529-6.
Mora-Macías, J., M. A. Giráldez-Sánchez, M. López, J. Domínguez, and M. E. Reina-Romo. Comparison of methods for assigning the material properties of distraction callus in computational model. Int. J. Numer. Method. Biomed. Eng. 35:e3227, 2019.
Mora-Macías, J., A. Pajares, P. Miranda, J. Domínguez, and E. Reina-Romo. Mechanical characterization via nanoindentation of the woven bone developed during bone transport. J. Mech. Behav. Biomed. Mater. 74:236–244, 2017.
Mora-Macías, J., E. Reina-Romo, and J. Domínguez. Distraction osteogenesis device to estimate the axial stiffness of the callus in vivo. Med. Eng. Phys. 37:969–978, 2015.
Mora-Macías, J., E. Reina-Romo, and J. Domínguez. Model of the distraction callus tissue behavior during bone transport based in experiments in vivo. J. Mech. Behav. Biomed. Mater. 61:419–430, 2016.
Mora-Macías, J., E. Reina-Romo, M. López-Pliego, M. A. Giráldez-Sánchez, and J. Domínguez. In vivo mechanical characterization of the distraction callus during bone consolidation. Ann. Biomed. Eng. 43:2663–2674, 2015.
Mora-Macías, J., E. Reina-Romo, J. Morgaz, and J. Domínguez. In vivo gait analysis during bone transport. Ann. Biomed. Eng. 43:2090–2100, 2015.
Morasiewicz, M., P. Koprowski, Z. Wrzosek, and S. Dragan. Gait analysis in patients after lengthening and correction of tibia with Ilizarov technique. Physiotherapy. 18:9–18, 2010.
Moseley, C. F. Leg lengthening. A review of 30 years. Clin. Orthop. Relat. Res. 247:38–43, 1989.
Paley, D. Problems, obstacles, and complications of limb lengthening by Ilizarov technique. Clin. Orthop. Relat. Res. 250:81–104, 1990.
Panjabi, M. M., S. D. Walter, M. Karuda, A. A. White, and J. P. Lawson. Correlations of radiographic analysis of healing fractures with strength: a statistical analysis of experimental osteotomies. J. Orthop. Res. 3:212–218, 1985.
Pardes, A., B. R. Freedman, and L. J. Soslowsky. Ground reaction forces are more sensitive gait measures than temporal parameters in rodents following rotator cuff injury. J. Biomech. 49:376–381, 2016.
Reichel, H., S. Lebek, C. Alter, and W. Hein. Biomechanical and densitometric bone properties after callus distraction in sheep. Clin. Orthop. Relat. Res. 357:237–254, 1998.
Reina-Romo, E., M. J. Gómez-Benito, J. M. García-Aznar, J. Domínguez, and M. Doblaré. Modeling distraction osteogenesis: analysis of the distraction rate. Biomech. Model Mechanobiol. 8:323–335, 2009.
Reina-Romo, E., M. J. Gómez-Benito, J. M. García-Aznar, J. Domínguez, and M. Doblaré. An interspecies computational study on limb lengthening. Proc. Inst. Mech. Eng. 224:1245–1256, 2010.
Reina-Romo, E., M. J. Gómez-Benito, J. M. García-Aznar, J. Domínguez, and M. Doblaré. Growth mixture model of distraction osteogenesis: effect of pre-traction stresses. Biomech. Model Mechanobiol. 9:103–115, 2010.
Reina-Romo, E., M. J. Gómez-Benito, A. Sampietro-Fuentes, J. Domínguez, and J. M. García-Aznar. Three-dimensional simulation of mandibular distraction osteogenesis: mechanobiological analysis. Ann. Biomed. Eng. 39:35–43, 2011.
Sailhan, F. Bone lengthening (distraction osteogenesis): a literature review. Osteoporos. Int. 22:2011–2015, 2011.
Seebeck, P., M. S. Thompson, A. Parwani, W. R. Taylor, H. Shell, and G. N. Duda. Gait evaluation: a tool to monitor bone healing? Clin. Biomech. 20:883–891, 2005.
Singare, S., L. Dichen, Y. Liu, W. Zhongying, and J. Wang. The effect of latency on bone lengthening force and bone mineralization: an investigation using strain gauge mounted on internal distractor device. Biomed. Eng. Online. 5:18, 2006.
Sopakayang, R., and R. De Vita. A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagen tissues. Med. Eng. Phys. 33:1056–1063, 2011.
Svodoba, Z., L. Bizovska, M. Janura, E. Kubonova, K. Janurova, and N. Vuillerme. Variability of spatial temporal gait parameters and the center of pressure displacements during gait in elderly fallers and nonfallers: a 6-month prospective study. PLoS ONE. 12:e0171997, 2017.
Vauhkonen, M., J. Peltonen, E. Karaharju, K. Aalto, and I. Alitalo. Collagen synthesis and mineralization in early phase of distraction bone healing. Bone Miner. 10:171–181, 1990.
Waanders, N. A., M. Richards, H. Steen, J. L. Kuhn, S. A. Goldstein, and J. A. Goulet. Evaluation of the mechanical environment during distraction osteogenesis. Clin. Orthop. Relat. Res. 349:225–234, 1998.
Webb, J., G. Herling, T. Gardner, J. Kenwright, and A. H. R. W. Simpson. Manual assessment of fracture stiffness. Injury. 27:319–320, 1996.
Wehner, T., M. Steiner, A. Ignatius, and L. Claes. Prediction of the time course of callus stiffness as a function of mechanical parameters in experimental rat fracture healing studies—a numerical study. PLoS ONE. 9:e115695, 2014.
Wen, H., S. Zhus, C. Li, and Y. Xu. Bone transport versus acute shortening for the management of infected tibial bone defects: a meta-analysis. BMC Musculoskelet. Disord. 21:80, 2020.
Yin, Q., Z. Sun, S. Gu, Y. Bao, X. Wei, and S. Song. Effectiveness comparison of using bone transport and bone shortening-lengthening for tibial bone and soft tissue defects. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 28:818–822, 2014.
Young, N., F. D. Bell, and A. Anthony. Pediatric pain patterns during Ilizarov treatment of limb length discrepancy and angular deformity. J. Pediatr. Orthop. 14:352–357, 1994.
Acknowledgments
We thank the Junta de Andalucía and the Ministerio de Economía y Competitividad from the Government of Spain for funding this research (US-1261691, DPI2017-82501-P, and PGC2018-097257-B-C31) and the FPU Grant of one of the authors (FPU17/05361).
Conflict of interest
The authors have no financial or personal relationships which could inappropriately influence the contents of this paper. Therefore, no conflict of interest is declared.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Michael S. Detamore oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Blázquez-Carmona, P., Mora-Macías, J., Morgaz, J. et al. Mechanobiology of Bone Consolidation During Distraction Osteogenesis: Bone Lengthening Vs. Bone Transport. Ann Biomed Eng 49, 1209–1221 (2021). https://doi.org/10.1007/s10439-020-02665-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-020-02665-z