Skip to main content

Advertisement

Log in

Fully Implanted Prostheses for Musculoskeletal Limb Reconstruction After Amputation: An In Vivo Feasibility Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Previous prostheses for replacing a missing limb following amputation must be worn externally on the body. This limits the extent to which prostheses could physically interface with biological tissues, such as muscles, to enhance functional recovery. The objectives of our study were to (1) test the feasibility of implanting a limb prosthesis, or endoprosthesis, entirely within living skin at the distal end of a residual limb, and (2) identify effective surgical and post-surgical care approaches for implanting endoprostheses in a rabbit model of hindlimb amputation. We iteratively designed, fabricated, and implanted unjointed endoprosthesis prototypes in six New Zealand White rabbits following amputation. In the first three rabbits, the skin failed to heal due to ishemia and dehiscence along the sutured incision. The skin of the final three subsequent rabbits successfully healed over the endoprotheses. Factors that contributed to successful outcomes included modifying the surgical incision to preserve vasculature; increasing the radii size on the endoprostheses to reduce skin stress; collecting radiographs pre-surgery to match the bone pin size to the medullary canal size; and ensuring post-operative bandage integrity. These results will support future work to test jointed endoprostheses that can be attached to muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Anderson, D. E., G. St-Jean, D. C. Richardson, R. M. DeBowes, J. K. Roush, S. R. Lowry, P. W. Toll, H. M. Aberman, D. C. Van Sickle, and J. J. Hoskinson. Improved osseointeraction of calcium phosphate-coated external fixation pins. Studies in calves. Acta Orthop. Scand. 68:571–576, 1997.

    Article  CAS  Google Scholar 

  2. Biddiss, E., and T. Chau. Upper-limb prosthetics: critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 86:977–987, 2007.

    Article  Google Scholar 

  3. Blaschke, A. C., H. Jampol, and C. L. Taylor. Biomechanical consideration in cineplasty. J. Appl. Physiol. 5:195–206, 1952.

    Article  CAS  Google Scholar 

  4. Choi, B., N. M. Kang, and J. S. Nelson. Laser speckle imaging for monitoring blood flow dynamics in the in vivo rodent dorsal skin fold model. Microvasc. Res. 68:143, 2004.

    Article  Google Scholar 

  5. Clites, T. R., M. J. Carty, J. B. Ullauri, M. E. Carney, L. M. Mooney, J.-F. Duval, S. S. Srinivasan, and H. M. J. S. T. M. Herr. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 10:8373, 2018.

    Article  Google Scholar 

  6. Crouch, D. L., and H. H. J. J. Huang. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task. J. Neural Eng. 14:036008, 2017.

    Article  Google Scholar 

  7. Engh, C. A., P. Massin, and K. E. Suthers. Roentgenographic assessment of the biologic fixation of porous-surfaced femoral components. Clin. Orthop. Relat. Res. 257:107–128, 1990.

    Google Scholar 

  8. Erlich, M. A., and A. Parhiscar. Nasal dorsal augmentation with silicone implants. Facial Plast. Surg. 19:325–330, 2003.

    Article  Google Scholar 

  9. Frölke, J. P. M., R. A. Leijendekkers, and H. van de Meent. Osseointegrated prosthesis for patients with an amputation: multidisciplinary team approach in the NetherlandsOsseointegrierte Prothese für Patienten nach Amputation: Multidisziplinärer Behandlungsansatz in den Niederlanden. Der Unfallchirurg 120:293–299, 2017.

    Article  Google Scholar 

  10. Hemmrich, K., and D. Von Heimburg. Biomaterials for adipose tissue engineering. Expert Rev. Med. Devices 3:635–645, 2006.

    Article  CAS  Google Scholar 

  11. Herr, H., G. P. Whiteley, and D. S. Childress. Cyborg technology: biomimetic prosthetic and orthotic technology. In: Biologically Inspired Intelligent Robots, edited by Y. Bar-Cohen, and C. L. Breazeal. Bellingham: SPIE Press, 2003, pp. 104–144.

    Google Scholar 

  12. Hulth, A., and S. Olerud. Studies on amputation stumps in rabbits. J. Bone Joint Surg. 44:431–435, 1962.

    Article  Google Scholar 

  13. Insall, J. N., R. Binazzi, and L. A. Mestriner. Total knee arthroplasty. Clin. Orthop. Relat. Res. 192:13–22, 1962.

    Google Scholar 

  14. Jiang, N., J. L. Vest-Nielsen, S. Muceli, and D. Farina. EMG-based simultaneous and proportional estimation of wrist/hand kinematics in uni-lateral trans-radial amputees. J. Neuroeng. Rehabil. 9:42, 2012.

    Article  Google Scholar 

  15. Jönsson, S., K. Caine-Winterberger, and R. Brånemark. Osseointegration amputation prostheses on the upper limbs: methods, prosthetics and rehabilitation. Prosthet. Orthot. Int. 35:190–200, 2011.

    Article  Google Scholar 

  16. Kavanagh, B. F., D. M. Ilstrup, and J. R. Fitzgerald. Revision total hip arthroplasty. J. Bone Joint. Surg. 67:517–526, 1985.

    Article  CAS  Google Scholar 

  17. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9:718–727, 1999.

    Article  CAS  Google Scholar 

  18. Kyberd, P. J., E. D. Lemaire, E. Scheme, C. MacPhail, L. Goudreau, G. Bush, and M. Brookeshaw. Two-degree-of-freedom powered prosthetic wrist. J. Rehabil. Res. Dev. 48:609–618, 2011.

    Article  Google Scholar 

  19. Langrana, N., H. Alexander, I. Strauchler, A. Mehta, and J. Ricci. Effect of mechanical load in wound healing. Ann. Plast. Surg. 10:200–208, 1983.

    Article  CAS  Google Scholar 

  20. Lawson, B. E., J. Mitchell, D. Truex, A. Shultz, E. Ledoux, and M. Goldfarb. A robotic leg prosthesis: design, control, and implementation. IEEE Robot. Autom. Mag. 21:70–81, 2014.

    Article  Google Scholar 

  21. Lewallen, E. A., S. M. Riester, C. A. Bonin, H. M. Kremers, A. Dudakovic, S. Kakar, R. C. Cohen, J. J. Westendorf, D. G. Lewallen, and A. J. van Wijnen. Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng. B: Rev. 21:218–230, 2014.

    Article  Google Scholar 

  22. Lu, W., J. J. Li, B. Bosley, and M. Muderis. The Osseointegrated Prosthetic Limb (OPL) for the reconstruction of lower limb amputees. Curr. Implant Tech. Fut. Direc. 8:63, 2016.

    Google Scholar 

  23. Mavrogenis, A., R. Dimitriou, J. Parvizi, and G. Babis. Biology of implant osseointegration. J. Musculoskelet. Neuronal Interact. 9:61–71, 2009.

    CAS  PubMed  Google Scholar 

  24. Melvin, A., A. Litsky, J. Mayerson, K. Stringer, D. Melvin, and N. Juncosa-Melvin. An artificial tendon to connect the quadriceps muscle to the Tibia. J. Orthop. Res. 29:1775–1782, 2011.

    Article  Google Scholar 

  25. Millington, P. F., and R. Wilkinson. Skin. Cambridge Cambridgeshire. New York: Cambridge University Press, 1983.

    Google Scholar 

  26. Parenteau-Bareil, R., R. Gauvin, and F. Berthod. Collagen-based biomaterials for tissue engineering applications. Materials 3:1863–1887, 2010.

    Article  CAS  Google Scholar 

  27. Petersen, L. J. Direct comparison of laser Doppler flowmetry and laser Doppler imaging for assessment of experimentally-induced inflammation in human skin. Inflamm. Res. 62:1073–1078, 2013.

    Article  CAS  Google Scholar 

  28. Pons, J., E. Rocon, R. Ceres, D. Reynaerts, B. Saro, S. Levin, and W. Van Moorleghem. The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Auton. Robots 16:143–163, 2004.

    Article  Google Scholar 

  29. Resnik, L., M. R. Meucci, S. Lieberman-Klinger, C. Fantini, D. L. Kelty, R. Disla, and N. Sasson. Advanced upper limb prosthetic devices: implications for upper limb prosthetic rehabilitation. Arch. Phys. Med. Rehabil. 93:710–717, 2012.

    Article  Google Scholar 

  30. Rink, C., M. M. Wernke, H. M. Powell, S. Gynawali, R. M. Schroeder, J. Y. Kim, J. A. Denune, G. M. Gordillo, J. M. Colvin, and C. K. Sen. Elevated vacuum suspension preserves residual-limb skin health in people with lower-limb amputation: randomized clinical trial. J. Rehabil. Res. Dev. 53:1121, 2016.

    Article  Google Scholar 

  31. Rink, C. L., M. M. Wernke, H. M. Powell, M. Tornero, S. C. Gnyawali, R. M. Schroeder, J. Y. Kim, J. A. Denune, A. W. Albury, and G. M. Gordillo. Standardized approach to quantitatively measure residual limb skin health in individuals with lower limb amputation. Adv. Wound Care 6:225–232, 2017.

    Article  Google Scholar 

  32. Roy, S., S. Biswas, S. Khanna, G. Gordillo, V. Bergdall, J. Green, C. B. Marsh, L. J. Gould, and C. K. Sen. Characterization of a preclinical model of chronic ischemic wound. Physiol. Genomics 37:211–224, 2009.

    Article  CAS  Google Scholar 

  33. Sanna, M., C. Sanna, F. Caputo, G. Piu, and M. Salvi. Surgical approaches in total knee arthroplasty. Joints 1:34–44, 2013.

    PubMed  PubMed Central  Google Scholar 

  34. Sato, T., M. Araki, N. Nakajima, K. Omori, and T. Nakamura. Biodegradable polymer coating promotes the epithelization of tissue-engineered airway prostheses. J. Thorac. Cardiovasc. Surg. 139:26–31, 2010.

    Article  CAS  Google Scholar 

  35. Shanklin, D. R., and D. L. Smalley. Dynamics of wound healing after silicone device implantation. Exp. Mol. Pathol. 67:26–39, 1999.

    Article  CAS  Google Scholar 

  36. Srinivasan, S. S., M. Diaz, M. Carty, and H. M. Herr. Towards functional restoration for persons with limb amputation: a dual-stage implementation of regenerative agonist-antagonist myoneural interfaces. Sci. Rep. 9:1981, 2019.

    Article  Google Scholar 

  37. Timmenga, E. J. F., T. T. Andreassen, H. J. Houthoff, and P. J. Klopper. The effect of mechanical stress on healing skin wounds: an experimental study in rabbits using tissue expansion. Br. J. Plast. Surg. 44:514–519, 1991.

    Article  CAS  Google Scholar 

  38. Visscher, M. O., M. Robinson, B. Fugit, R. J. Rosenberg, S. B. Hoath, and R. R. Wickett. Amputee skin condition: occlusion, stratum corneum hydration and free amino acid levels. Arch. Dermatol. Res. 303:117–124, 2011.

    Article  CAS  Google Scholar 

  39. Weir, R. F., C. W. Heckathorne, and D. S. Childress. Cineplasty as a control input for externally powered prosthetic components. J. Rehabil. Res. Dev. 38:357–363, 2001.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Elizabeth Croy for her assistance with surgeries and radiography; Dr. Lori Cole and Chris Carter for veterinary care provided for the rabbits in this study; the Office of Laboratory Animal Care and Animal Housing Facility staffs at the University of Tennessee, Knoxville for animal care assistance; Dr. William Hamel for use of the stainless-steel 3-D printer; Dr. Brett Compton for providing silicone preparation equipment; and Danny Graham for his assistance in machining parts for the endoprostheses. Research reported in this publication was supported by (1) the Eunice Kennedy Shiver National Institute of Child Health & Human Development of the National Institutes of Health under Award Number K12HD073945, (2) a seed grant from the University of Tennessee Office of Research and Engagement, and (3) the University of Tennessee Department of Mechanical, Aerospace and Biomedical Engineering start-up funds.

Conflict of interest

We have no financial or personal relationships with other people or organizations that could bias our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick T. Hall.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hall, P.T., Bratcher, S.Z., Stubbs, C. et al. Fully Implanted Prostheses for Musculoskeletal Limb Reconstruction After Amputation: An In Vivo Feasibility Study. Ann Biomed Eng 49, 1012–1021 (2021). https://doi.org/10.1007/s10439-020-02645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02645-3

Keywords

Navigation