Skip to main content

Head Impact Sensor Studies In Sports: A Systematic Review Of Exposure Confirmation Methods

Abstract

To further the understanding of long-term sequelae as a result of repetitive head impacts in sports, in vivo head impact exposure data are critical to expand on existing evidence from animal model and laboratory studies. Recent technological advances have enabled the development of head impact sensors to estimate the head impact exposure of human subjects in vivo. Previous research has identified the limitations of filtering algorithms to process sensor data. In addition, observer and/or video confirmation of sensor-recorded events is crucial to remove false positives. The purpose of the current study was to conduct a systematic review to determine the proportion of published head impact sensor data studies that used filtering algorithms, observer confirmation and/or video confirmation of sensor-recorded events to remove false positives. Articles were eligible for inclusion if collection of head impact sensor data during live sport was reported in the methods section. Descriptive data, confirmation methods and algorithm use for included articles were coded. The primary objective of each study was reviewed to identify the primary measure of exposure, primary outcome and any additional covariates. A total of 168 articles met the inclusion criteria, the publication of which has increased in recent years. The majority used filtering algorithms (74%). The majority did not use observer and/or video confirmation for all sensor-recorded events (64%), which suggests estimates of head impact exposure from these studies may be imprecise.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References

  1. Bari, S., D. O. Svaldi, I. Jang, et al. Dependence on subconcussive impacts of brain metabolism in collision sport athletes: an MR spectroscopic study. Brain Imaging Behav. 13(3):735–749, 2019.

    PubMed  Google Scholar 

  2. Broglio, S. P., D. Martini, L. Kasper, J. T. Eckner, and J. S. Kutcher. Estimation of head impact exposure in high school football: implications for regulating contact practices. Am. J. Sports Med. 41(12):2877–2884, 2013.

    PubMed  PubMed Central  Google Scholar 

  3. Brokaw, E. B., M. S. Fine, K. E. Kindschi, et al. Cross-sectional evaluation of visuomotor tracking performance following subconcussive head impacts. Technol. Health Care 26(1):109–118, 2018.

    CAS  PubMed  Google Scholar 

  4. Carey, L., P. Stanwell, D. P. Terry, et al. Verifying head impacts recorded by a wearable sensor using video footage in rugby league: a preliminary study. Sports Med. Open. 5(1):9, 2019.

    PubMed  PubMed Central  Google Scholar 

  5. Caswell, S. V., P. Kelshaw, A. E. Lincoln, et al. Game-related impacts in high school boys’ lacrosse. Orthop. J. Sports Med. 7(4):2325967119835587, 2019.

    PubMed  PubMed Central  Google Scholar 

  6. Caswell, S. V., A. E. Lincoln, H. Stone, et al. Characterizing verified head impacts in high school girls’ lacrosse. Am. J. Sports Med. 45(14):3374–3381, 2017.

    PubMed  Google Scholar 

  7. Cortes, N., A. E. Lincoln, G. D. Myer, et al. Video analysis verification of head impact events measured by wearable sensors. am. j. sports Med. 45(10):2379–2387, 2017.

    PubMed  Google Scholar 

  8. Crisco, J. J., J. J. Chu, and R. M. Greenwald. An algorithm for estimating acceleration magnitude and impact location using multiple nonorthogonal single-axis accelerometers. J. Biomech. Eng. 126(6):849–854, 2004.

    PubMed  Google Scholar 

  9. Dickson, T. J., S. Trathen, G. S. Waddington, F. A. Terwiel, and D. Baltis. A human factors approach to snowsport safety: novel research on pediatric participants’ behaviors and head injury risk. Appl. Ergon. 53(A):79–86, 2016.

    PubMed  Google Scholar 

  10. Friess, S. H., R. N. Ichord, J. Ralston, et al. Repeated traumatic brain injury affects composite cognitive function in piglets. J. Neurotrauma 26(17):1111–1121, 2009.

    PubMed  PubMed Central  Google Scholar 

  11. Gwin, J. T., J. J. Chu, S. G. Diamond, et al. An investigation of the NOCSAE linear impactor test method based on in vivo measures of head impact acceleration in American football. J. Biomech. Eng. 132(1):011006, 2010.

    PubMed  Google Scholar 

  12. Huber, C. M., D. A. Patton, K. Jenkins, and K. B. Arbogast. Video analysis of head impact sensor data from adolescent soccer players. Arch. Phys. Med. Rehabil. 99(11):e152, 2018.

    Google Scholar 

  13. Kelley, M. E., J. E. Urban, L. E. Miller, et al. Head impact exposure in youth football: comparing age- and weight-based levels of play. J. Neurotrauma 34(11):1939–1947, 2017.

    PubMed  PubMed Central  Google Scholar 

  14. Kiefer, A. W., C. A. DiCesare, P. Nalepka, et al. Less efficient oculomotor performance is associated with increased incidence of head impacts in high school ice hockey. Journal of Science and Medicine in Sport. 21(1):4–9, 2018.

    PubMed  Google Scholar 

  15. King, D. A., P. A. Hume, M. Brughelli, and C. Gissane. Instrumented mouthguard acceleration analyses for head impacts in amateur rugby union players over a season of matches. Am. J. Sports Med. 43(3):614–624, 2015.

    PubMed  Google Scholar 

  16. Kuo, C., L. Wu, J. Loza, et al. Comparison of video-based and sensor-based head impact exposure. Biomech. Model. Mechanobiol. 13(6):e0199238, 2018.

    Google Scholar 

  17. Kuo, C., L. Wu, W. Zhao, et al. Propagation of errors from skull kinematic measurements to finite element tissue responses. Biomech. Model. Mechanobiol. 17(1):235–247, 2018.

    PubMed  Google Scholar 

  18. Lamond, L. C., J. B. Caccese, T. A. Buckley, J. Glutting, and T. W. Kaminski. Linear acceleration in direct head contact across impact type, player position, and playing scenario in collegiate women’s soccer. J. Athl. Train. 53(2):115–121, 2018.

    PubMed  PubMed Central  Google Scholar 

  19. Lucas, R. M., and A. J. McMichael. Association or causation: evaluating links between “environment and disease”. Bull. World Health Organ. 83(10):792–795, 2005.

    PubMed  PubMed Central  Google Scholar 

  20. Lynall, R. C., L. B. Lempke, R. J. Johnson, M. N. Anderson, and J. D. Schmidt. A comparison of youth flag and tackle football head impact biomechanics. J. Neurotrauma 36(11):1752–1757, 2019.

    PubMed  Google Scholar 

  21. McAllister, T. W., and M. McCrea. Long-term cognitive and neuropsychiatric consequences of repetitive concussion and head-impact exposure. J. Athl. Train. 52(3):309–317, 2017.

    PubMed  PubMed Central  Google Scholar 

  22. McCuen, E. C., D. O. Svaldi, K. Breedlove, et al. Collegiate women’s soccer players suffer greater cumulative head impacts than their high school counterparts. J. Biomech. 48(13):3729–3732, 2015.

    Google Scholar 

  23. McIntosh, A. S., C. Willmott, D. A. Patton, et al. An assessment of the utility and functionality of wearable head impact sensors in Australian football. J. Sci. Med. Sport. 22(7):784–789, 2019.

    PubMed  Google Scholar 

  24. McKee, A. C., M. L. Alosco, and B. R. Huber. Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Neurosurg. Clin. N. Am. 27(4):529–535, 2016.

    PubMed  PubMed Central  Google Scholar 

  25. Miller, L. E., E. K. Pinkerton, K. C. Fabian, et al. Characterizing head impact exposure in youth female soccer with a custom-instrumented mouthpiece. Res. Sports Med. 28(1):55–71, 2020.

    PubMed  Google Scholar 

  26. Miyashita, T. L., E. Diakogeorgiou, K. Marrie, and R. Danaher. Frequency and location of head impacts in Division I men’s lacrosse players. Athl. Train. Sports Health Care. 8(5):202–208, 2016.

    Google Scholar 

  27. Moher, D., L. Shamseer, M. Clarke, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P). Syst. Rev. 4(1):1, 2015.

    PubMed  PubMed Central  Google Scholar 

  28. Nevins, D. D., K. Hildenbrand, J. Kensrud, A. Vasavada, and L. Smith. Laboratory and field evaluation of a small form factor head impact sensor in un-helmeted play. J. Sports Eng. Technol. 232(3):242–254, 2018.

    Google Scholar 

  29. O’Connor, K. L., T. Peeters, S. Szymanski, and S. P. Broglio. Individual impact magnitude vs. cumulative magnitude for estimating concussion odds. Ann. Biomed. Eng. 45(8):1985–1992, 2017.

    PubMed  Google Scholar 

  30. O’Connor, K. L., S. Rowson, S. M. Duma, and S. P. Broglio. Head-impact–measurement devices: a systematic review. J. Athl. Train. 52(3):206–227, 2017.

    PubMed  PubMed Central  Google Scholar 

  31. Patton, D. A. A review of instrumented equipment to investigate head impacts in sport. Appl. Bionics Biomech. 2016:7049743, 2016.

    PubMed  PubMed Central  Google Scholar 

  32. Patton, D. A., C. M. Huber, C. C. McDonald, et al. Video confirmation of head impact sensor data from high school soccer players. Am. J. Sports Med. 48(5):1246–1253, 2020.

    PubMed  PubMed Central  Google Scholar 

  33. Press, J. N., and S. Rowson. Quantifying head impact exposure in collegiate women’s soccer. Clin. J. Sport Med. 27(2):104–110, 2017.

    PubMed  Google Scholar 

  34. Qin, Y., G.-L. Li, X.-H. Xu, et al. Brain structure alterations and cognitive impairment following repetitive mild head impact: an in vivo MRI and behavioral study in rat. Behav. Brain Res. 340:41–48, 2018.

    PubMed  Google Scholar 

  35. Raghupathi, R., M. F. Mehr, M. A. Helfaer, and S. S. Margulies. Traumatic axonal injury is exacerbated following repetitive closed head injury in the neonatal pig. J. Neurotrauma 21(3):307–316, 2004.

    PubMed  Google Scholar 

  36. Rich, A. M., T. M. Filben, L. E. Miller, et al. Development, validation and pilot field deployment of a custom mouthpiece for head impact measurement. Ann. Biomed. Eng. 47(10):2109–2121, 2019.

    PubMed  Google Scholar 

  37. Rose, S. C., K. O. Yeates, D. R. Fuerst, et al. Head impact burden and change in neurocognitive function during a season of youth football. J. Head Trauma Rehabil. 34(2):87–95, 2019.

    PubMed  Google Scholar 

  38. Rose, S. C., K. O. Yeates, J. T. Nguyen, et al. Neurocognitive function and head impact burden over two seasons of youth tackle football. J. Neurotrauma 36(19):2803–2809, 2019.

    PubMed  Google Scholar 

  39. Shamseer, L., D. Moher, M. Clarke, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P): elaboration and explanation. BMJ 350:g7647, 2015.

    PubMed  Google Scholar 

  40. Shultz, S. R., D. F. MacFabe, K. A. Foley, R. Taylor, and D. P. Cain. Subconcussive brain injury in the long-evans rat induces acute neuroinflammation in the absence of behavioral impairments. Behav. Brain Res. 229(1):145–152, 2012.

    CAS  PubMed  Google Scholar 

  41. Slemmer, J. E., and J. T. Weber. The extent of damage following repeated injury to cultured hippocampal cells is dependent on the severity of insult and inter-injury interval. Neurobiol. Dis. 18(3):421–431, 2005.

    PubMed  Google Scholar 

  42. Stemper, B. D., A. S. Shah, J. Harezlak, et al. Repetitive head impact exposure in college football following an NCAA rule change to eliminate two-a-day preseason practices: a study from the NCAA-DoD CARE Consortium. Ann. Biomed. Eng. 47(10):2073–2085, 2019.

    PubMed  PubMed Central  Google Scholar 

  43. Swartz, E. E., J. L. Myers, S. B. Cook, et al. A helmetless-tackling intervention in american football for decreasing head impact exposure: a randomized controlled trial. J. Sci. Med. Sport. 22(10):1102–1107, 2019.

    PubMed  Google Scholar 

  44. Tyson, A. M., S. M. Duma, and S. Rowson. Laboratory evaluation of low-cost wearable sensors for measuring head impacts in sports. J. Appl. Biomech. 34(4):320–326, 2018.

    PubMed  Google Scholar 

  45. Willmott, C., A. S. McIntosh, T. Howard, et al. SCAT3 Changes from baseline and associations with X2 patch measured head acceleration in amateur Australian football players. J. Sci. Med. Sport. 21(5):442–446, 2018.

    PubMed  Google Scholar 

  46. Wu, L. C., C. Kuo, J. Loza, et al. Detection of American football head impacts using biomechanical features and support vector machine classification. Sci. Rep. 8:855, 2018.

    Google Scholar 

  47. Wu, L. C., V. Nangia, K. Bui, et al. In vivo evaluation of wearable head impact sensors. Ann. Biomed. Eng. 44(4):1234–1245, 2016.

    PubMed  Google Scholar 

  48. Zonner, S. W., K. Ejima, Z. W. Bevilacqua, et al. Association of increased serum S100B levels with high school football subconcussive head impacts. Front. Neurol. 10(327):1–10, 2019.

    Google Scholar 

Download references

Acknowledgments

The current study was funded by the Pennsylvania Department of Health and the National Institute of Neurologic Disorders and Stroke of the National Institutes of Health (R01NS097549). The content of this systematic review is solely the responsibility of the authors and does not necessarily represent the official views of the Pennsylvania Department of Health and/or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Declan A. Patton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Joel Stitzel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 460 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patton, D.A., Huber, C.M., Jain, D. et al. Head Impact Sensor Studies In Sports: A Systematic Review Of Exposure Confirmation Methods. Ann Biomed Eng 48, 2497–2507 (2020). https://doi.org/10.1007/s10439-020-02642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02642-6

Keywords

  • General sports trauma
  • Head injuries/concussion
  • Injury prevention
  • Pediatric sports medicine