Skip to main content
Log in

Machine Learning Outcome Prediction in Dilated Cardiomyopathy Using Regional Left Ventricular Multiparametric Strain

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The clinical presentation of idiopathic dilated cardiomyopathy (IDCM) heart failure (HF) patients who will respond to medical therapy (responders) and those who will not (non-responders) is often similar. A machine learning (ML)-based clinical tool to identify responders would prevent unnecessary surgery, while targeting non-responders for early intervention. We used regional left ventricular (LV) contractile injury patterns in ML models to identify IDCM HF non-responders. MRI-based multiparametric strain analysis was performed in 178 test subjects (140 normal subjects and 38 IDCM patients), calculating longitudinal, circumferential, and radial strain over 18 LV sub-regions for inclusion in ML analyses. Patients were identified as responders based upon symptomatic and contractile improvement on medical therapy. We tested the predictive accuracy of support vector machines (SVM), logistic regression (LR), random forest (RF), and deep neural networks (DNN). The DNN model outperformed other models, predicting response to medical therapy with an area under the receiver operating characteristic curve (AUC) of 0.94. The top features were longitudinal strain in (1) basal: anterior, posterolateral and (2) mid: posterior, anterolateral, and anteroseptal sub-regions. Regional contractile injury patterns predict response to medical therapy in IDCM HF patients, and have potential application in ML-based HF patient care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

DENSE:

Displacement encoding with stimulated echoes

DNN:

Deep neural networks

EHR:

Electronic health record

HF:

Heart failure

IDCM:

Idiopathic dilated cardiomyopathy

LR:

Logistic regression

LV:

Left ventricle

ML:

Machine learning

NYHA:

New York Heart Association

RF:

Random forest

ROC:

Receiver operating characteristic curve

SVM:

Support vector machines

References

  1. Churpek, M., T. Yuen, C. Winslow, et al. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit. Care Med. 44:368–374, 2016.

    Article  Google Scholar 

  2. Cupps, B. P., D. R. Bree, J. R. Wollmuth, A. C. Howells, R. K. Voeller, J. G. Rogers, and M. K. Pasque. Myocardial viability mapping by magnetic resonance-based multiparametric systolic strain analysis. Ann. Thorac. Surg. 86(5):1546–1553, 2008.

    Article  Google Scholar 

  3. Cupps, B. P., A. K. Taggar, L. M. Reynolds, J. S. Lawton, and M. K. Pasque. Regional myocardial contractile function: multiparametric strain mapping. Interact. Cardiovasc. Thorac Surg. 10(6):953–957, 2010.

    Article  Google Scholar 

  4. Gardner, B., S. Bingham, M. Allen, et al. Cardiac magnetic resonance versus transthoracic echocardiography for the assessment of cardiac volumes and regional function after myocardial infarction: an intrasubject comparison using simultaneous intrasubject recordings. Cardiovasc. Ultrasound. 7(38):1–7, 2009.

    Google Scholar 

  5. Henn, M., C. Lawrance, J. Kar, et al. Dilated cardiomyopathy: normalized multiparametric myocardial strain predicts contractile recovery. Ann. Thorac. Surg. 100(4):1284–1291, 2015.

    Article  Google Scholar 

  6. Jefferies, J., and J. Towbin. Dilated cardiomyopathy. Lancet 375(9716):752–762, 2010.

    Article  Google Scholar 

  7. Joseph, S., N. Moazami, B. P. Cupps, A. Howells, H. Craddock, G. Ewald, J. Rogers, and M. K. Pasque. Magnetic resonance imaging-based multiparametric systolic strain analysis and regional contractile heterogeneity in patients with dilated cardiomyopathy. J. Heart Lung Transplant. 28(4):388–394, 2009.

    Article  Google Scholar 

  8. Kar, J., A. K. Knutsen, B. P. Cupps, and M. K. A. Pasque. validation of two-dimensional in vivo regional strain computed from displacement encoding with stimulated echoes (DENSE), in reference to tagged magnetic resonance imaging and studies in repeatability. Ann. Biomed. Eng. 42(3):541–554, 2014.

    Article  Google Scholar 

  9. Kar, J., A. K. Knutsen, B. P. Cupps, X. Zhong, and M. K. Pasque. Three-dimensional regional strain computation method with displacement encoding with stimulated echoes (DENSE) in non-ischemic, non-valvular dilated cardiomyopathy patients and healthy subjects validated by tagged MRI. J. Magn. Reson. Imaging 41(2):386–396, 2015.

    Article  Google Scholar 

  10. Lancaster, T. S., J. Kar, B. P. Cupps, M. C. Henn, K. Kulshrestha, D. J. Koerner, and M. K. Pasque. Topographic mapping of left ventricular regional contractile injury in ischemic mitral regurgitation. J. Thorac. Cardiovasc. Surg. 154(1):149–158e1, 2017. https://doi.org/10.1016/j.jtcvs.2016.11.055.

    Article  PubMed  Google Scholar 

  11. Liu, N., J. Holcomb, C. Wade, et al. Utility of vital signs, heart rate variability and complexity, and machine learning for identifying the need for lifesaving interventions in trauma patients. Shock (Augusta, GA) 42:108–114, 2014.

    Article  Google Scholar 

  12. Merlo, M., A. Cannata, M. Gobbo, et al. Evolving concepts in dilated cardiomyopathy. Eur. J. Heart Fail. 20(2):228–239, 2018.

    Article  Google Scholar 

  13. Moulton, M., L. Cresswell, S. Downing, et al. Spline surface interpolation for calculating 3D ventricular strains from MRI tissue tagging. Am. J. Phyiol. 39:H281–H297, 1996.

    Google Scholar 

  14. Naylor, C. D. On the prospects for a (deep) learning health care system. JAMA 320(11):1099–1100, 2018.

    Article  Google Scholar 

  15. Nohria, A., S. Tsang, J. Fang, et al. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J. Am. Coll. Cardiol. 41(10):1797–1804, 2003.

    Article  Google Scholar 

  16. Spottiswoode, B. S., X. Zhong, A. T. Hess, C. M. Kramer, E. M. Meintjes, B. M. Mayosi, and F. H. Epstein. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans. Med. Imaging 26(1):15–30, 2007.

    Article  CAS  Google Scholar 

  17. Tarassenko, L., and E. J. Topol. Monitoring jet engines and the health of people. JAMA 320(22):2309–2310, 2018.

    Article  Google Scholar 

  18. Taylor, R., J. Pare, A. Venkatesh, et al. Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-drive, machine learning approach. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 23:269–278, 2016.

    Article  Google Scholar 

  19. Wojnarski, C., E. Roselli, J. Idrees, et al. Machine-learning phenotypic classification of bicuspid aortopathy. J. Thorac. Cardiovas. Surg. 155(2):461–469, 2017.

    Article  Google Scholar 

  20. Zhong, X., B. S. Spottiswoode, C. H. Meyer, C. M. Kramer, and F. H. Epstein. Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI. Magn. Reson. Med. 64(4):1089–1097, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

The authors have no conflicts of interest to disclose. Relevant funding sources included National Institutes of Health 1RO1HL112804 and 1R56HL136619.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Pasque.

Additional information

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacGregor, R.M., Guo, A., Masood, M.F. et al. Machine Learning Outcome Prediction in Dilated Cardiomyopathy Using Regional Left Ventricular Multiparametric Strain. Ann Biomed Eng 49, 922–932 (2021). https://doi.org/10.1007/s10439-020-02639-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02639-1

Keywords

Navigation