Skip to main content

Portable Device for the Measurement and Assessment of the Human Equilibrium


This work presents the design and development of a new alternative tool to measure the Center of Pressure (CoP) displacements, intended to evaluate the human balance. The device is based on a modified commercial balance board used for video games, resulting in a low-cost, portable device capable of computing the CoP, providing 24 of the most used indexes to test the human balance. The proposed standalone device runs on rechargeable batteries, weighs only 3.5 kg, and has a data storage capacity for over 1000 tests. Visual and auditory instructions assist its user interface. Thus, contrary to the commercial systems designed for laboratory use, this device enables the measurement of quantitative balance parameters in non-laboratory places, allowing the study of the balance of vulnerable populations directly on their typical environments. To evaluate the device, 20 older adults (68.60 ± 1.23 years) were tested, and the resulting values were compared with a similar study using a force platform; 19 indexes showed a similarity with those reported using force platform and 12 of these were statistically equivalent. The proposed device represents an open-source alternative tool for researchers and healthcare personnel to acquire reliable data to evaluate human balance.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    Agrawal, Y., J. P. Carey, C. C. Della Santina, M. C. Schubert, and L. B. Minor. Disorders of balance and vestibular function in US adults: data from the National Health and Nutrition Examination Survey, 2001-2004. Arch. Intern. Med. 169:938–944, 2009.

    Article  Google Scholar 

  2. 2.

    Alvarado Reyes, J. M., and C. E. Stern Forgach. Un complemento al teorema de Nyquist. Rev. Mex. Física E 56:165–171, 2010.

    Google Scholar 

  3. 3.

    Angın, E., F. Can, G. İyigün, B. Kırmızıgil, M. Malkoç, and Ü. Değer. Does balance influence daily living activities and quality of life in community-dwelling older people? Physiotherapy 102:e227–e228, 2016.

    Article  Google Scholar 

  4. 4.

    Audiffren, J., and E. Contal. Preprocessing the Nintendo Wii Board signal to derive more accurate descriptors of statokinesigrams A. Sensors 16:1208, 2016.

    Article  Google Scholar 

  5. 5.

    Bartlett, H. L., L. H. Ting, and J. T. Bingham. Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture 39:224–228, 2014.

    Article  Google Scholar 

  6. 6.

    Berg, K. O., B. E. Maki, J. I. Williams, P. J. Holliday, and S. L. Wood-Dauphinee. Clinical and laboratory measures of postural balance in an elderly population. Arch. Phys. Med. Rehabil. 73:1073–1080, 1992.

    CAS  PubMed  Google Scholar 

  7. 7.

    Bonnechère, B., B. Jansen, L. Omelina, M. Rooze, and S. VanSintJan. Interchangeability of the Wii Balance Board for Bipedal Balance Assessment. JMIR Rehabil. Assist. Technol. 2:e8, 2015.

    Article  Google Scholar 

  8. 8.

    Chiari, L., L. Rocchi, and A. Cappello. Stabilometric parameters are affected by anthropometry and foot placement. Clin. Biomech. 17:666–677, 2002.

    Article  Google Scholar 

  9. 9.

    Choosing a Force Plate (AMTI Web page) | Standard + Portable Force Plates for Research and Analysis of Gait, Balance, and Sports Performance | AMTI products.

  10. 10.

    Clark, R. A., A. L. Bryant, Y. Pua, P. McCrory, K. Bennell, and M. Hunt. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 31:307–310, 2010.

    Article  Google Scholar 

  11. 11.

    Clark, R. A., B. F. Mentiplay, Y.-H. Pua, and K. J. Bower. Reliability and validity of the Wii Balance Board for assessment of standing balance: a systematic review. Gait Posture 61:40–54, 2017.

    Article  Google Scholar 

  12. 12.

    De Oliveira, J. M. Statokinesigram normalization method. Behav. Res. Methods 49:310–317, 2017.

    Article  Google Scholar 

  13. 13.

    Deans, S. Determining the validity of the Nintendo Wii balance board as an assessment tool for balance. UNLV Theses Diss. Prof. Pap. Capstones, 2011.

  14. 14.

    Disogra, R. Drug side effects on hearing and balance testing. Hear. J. 71:10, 2018.

    Article  Google Scholar 

  15. 15.

    Eguchi, R., and M. Takahashi. Validity of the Nintendo Wii Balance Board for kinetic gait analysis. Appl. Sci. Switz. 8:285, 2018.

    Article  Google Scholar 

  16. 16.

    Estévez Pedraza, Á. G. Diseño y construcción de un dispositivo portátil para medición del centro de presión del cuerpo humano. UAEM M.D. Theses 109, 2017.;jsessionid=A99B33DE6361CC186F907E444BD8E998?sequence=3.

  17. 17.

    Faul, F., E. Erdfelder, A.-G. Lang, and A. Buchner. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39:175–191, 2007.

    Article  Google Scholar 

  18. 18.

    Findlay, G. F. G., B. Balain, J. M. Trivedi, and D. C. Jaffray. Does walking change the Romberg sign? Eur. Spine J. 18:1528–1531, 2009.

    Article  Google Scholar 

  19. 19.

    Grimaldi, G., and M. Manto. Mechanisms and Emerging Therapies in Tremor Disorders. New York: Springer Science & Business Media, p. 490, 2012.

    Google Scholar 

  20. 20.

    Horak, F. B. Clinical assessment of balance disorders. Gait Posture 6:76–84, 1997.

    Article  Google Scholar 

  21. 21.

    Howcroft, J., E. D. Lemaire, J. Kofman, and W. E. McIlroy. Elderly fall risk prediction using static posturography. PLOS ONE 12:e0172398, 2017.

    Article  Google Scholar 

  22. 22.

    Huurnink, A., D. P. Fransz, I. Kingma, and J. H. van Dieën. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J. Biomech. 46:1392–1395, 2013.

    Article  Google Scholar 

  23. 23.

    Joan, R. Modification of the Wii Balance Board, for use of scale and balance monitoring: Mod.Wii-Balance-Board. 2017.

  24. 24.

    Kim, M.-K., B.-S. Kong, and K.-T. Yoo. The effect of shoe type on static and dynamic balance during treadmill walking in young healthy women. J. Phys. Ther. Sci. 29:1653–1657, 2017.

    Article  Google Scholar 

  25. 25.

    Lakens, D. Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. Soc. Psychol. Personal. Sci. 8:355–362, 2017.

    Article  Google Scholar 

  26. 26.

    Leach, J. M., M. Mancini, R. J. Peterka, T. L. Hayes, and F. B. Horak. Validating and calibrating the Nintendo Wii balance board to derive reliable center of pressure measures. Sensors 14:18244–18267, 2014.

    Article  Google Scholar 

  27. 27.

    Lin, S., M. K. Ying, T. X. Ming, L. Ying, W. W. Cheung, L. K. Fai, Y. S. Leung, W. H. A. Shum, C. W. Lam, and Y. C. Pang. Monitoring diabetic patients by novel intelligent footwear system. Int. Conf. Comput. Healthcare 2012.

    Article  Google Scholar 

  28. 28.

    Maki, B. E., P. J. Holliday, and A. K. Topper. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 49:M72–84, 1994.

    CAS  Article  Google Scholar 

  29. 29.

    Martin, C. L., B. A. Phillips, T. J. Kilpatrick, H. Butzkueven, N. Tubridy, E. McDonald, and M. P. Galea. Gait and balance impairment in early multiple sclerosis in the absence of clinical disability. Mult. Scler. J. 12:620–628, 2006.

    CAS  Article  Google Scholar 

  30. 30.

    Objero, C. N., M. M. Wdowski, and M. W. Hill. Can arm movements improve postural stability during challenging standing balance tasks? Gait Posture 74:71–75, 2019.

    Article  Google Scholar 

  31. 31.

    Palmieri, R. M., C. D. Ingersoll, M. B. Stone, and B. A. Krause. Center-of-pressure parameters used in the assessment of postural control. J. Sport Rehabil. 11:51–66, 2002.

    Article  Google Scholar 

  32. 32.

    Perry, J. Gait analysis: normal and pathological function. J. Sports Sci. Med. 9:353, 2010.

    Google Scholar 

  33. 33.

    Prieto, T. E., J. B. Myklebust, R. G. Hoffmann, E. G. Lovett, and B. M. Myklebust. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 43:956–966, 1996.

    CAS  Article  Google Scholar 

  34. 34.

    Gabriel Repository. Gabriel-BIM/WBB-CoP. 2020 resourses.

  35. 35.

    Rocchi, L., L. Chiari, A. Cappello, and F. B. Horak. Identification of distinct characteristics of postural sway in Parkinson’s disease: a feature selection procedure based on principal component analysis. Neurosci. Lett. 394:140–145, 2006.

    CAS  Article  Google Scholar 

  36. 36.

    Rodgers, M., L. Forrester, C. Mizelle, and M. L. Harris-Love. Effects of gait velocity on COP symmetry measures in individuals with stroke. 28th annual meeting of the American Society of Biomechanics, 2004.

  37. 37.

    Scoppa, F., R. Capra, M. Gallamini, and R. Shiffer. Clinical stabilometry standardization: basic definitions – acquisition interval – sampling frequency. Gait Posture 37:290–292, 2013.

    Article  Google Scholar 

  38. 38.

    Sezer, O., and M. Ferdjallah. Adaptive autoregressive model for the analysis of center of pressure in healthy subjects during quiet standing. 48th Midwest Symposium on Circuits and Systems, 2005.

  39. 39.

    Sgrò, F., G. Monteleone, M. Pavone, and M. Lipoma. Validity analysis of Wii Balance Board versus baropodometer platform using an open custom integrated application. AASRI Procedia 8:22–29, 2014.

    Article  Google Scholar 

  40. 40.

    Thapa, P. B., P. Gideon, K. G. Brockman, R. L. Fought, and W. A. Ray. Clinical and biomechanical measures of balance as fall predictors in ambulatory nursing home residents. J. Gerontol. A 51:M239–246, 1996.

    CAS  Article  Google Scholar 

  41. 41.

    Weaver, T. B., C. Ma, and A. C. Laing. Use of the Nintendo Wii Balance Board for studying standing static balance control: technical considerations, force-plate congruency, and the effect of battery life. J. Appl. Biomech. 33:48–55, 2017.

    Article  Google Scholar 

  42. 42.

    Winter, D. Human balance and posture control during standing and walking. Gait Posture 3:193–214, 1995.

    Article  Google Scholar 

  43. 43.

    Yelnik, A. P., S. Tasseel Ponche, C. Andriantsifanetra, C. Provost, A. Calvalido, and P. Rougier. Walking with eyes closed is easier than walking with eyes open without visual cues. Ann. Phys. Rehabil. Med. 58:332–335, 2015.

    CAS  Article  Google Scholar 

Download references


EPAG gratefully acknowledges the scholarship from CONACyT to pursue his postgraduate studies. LPR was supported by a grant from the Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México INGER-DI-CRECITES-003-2018 “Red colaborativa de Investigación Traslacional para el Envejecimiento Saludable de la Ciudad de México” (RECITES).

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical Statement

The authors have confirmed that any identifiable participants in this study have given their consent for publication.

Author information



Corresponding author

Correspondence to Rigoberto Martínez-Méndez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Estévez-Pedraza, Á.G., Martínez-Méndez, R., Portillo-Rodríguez, O. et al. Portable Device for the Measurement and Assessment of the Human Equilibrium. Ann Biomed Eng 49, 933–945 (2021).

Download citation


  • Center of pressure
  • Balance in older adults
  • Electronic system