Skip to main content

Perivascular Secretome Influences Hematopoietic Stem Cell Maintenance in a Gelatin Hydrogel

Abstract

Adult hematopoietic stem cells (HSCs) produce the body’s full complement of blood and immune cells. They reside in specialized microenvironments, or niches, within the bone marrow. The perivascular niche near blood vessels is believed to help maintain primitive HSCs in an undifferentiated state but demonstration of this effect is difficult. In vivo studies make it challenging to determine the direct effect of the endosteal and perivascular niches as they can be in close proximity, and two-dimensional in vitro cultures often lack an instructive extracellular matrix environment. We describe a tissue engineering approach to develop and characterize a three-dimensional perivascular tissue model to investigate the influence of the perivascular secretome on HSC behavior. We generate 3D endothelial networks in methacrylamide-functionalized gelatin hydrogels using human umbilical vein endothelial cells (HUVECs) and mesenchymal stromal cells (MSCs). We identify a subset of secreted factors important for HSC function, and examine the response of primary murine HSCs in hydrogels to the perivascular secretome. Within 4 days of culture, perivascular conditioned media promoted maintenance of a greater fraction of hematopoietic stem and progenitor cells. This work represents an important first-generation perivascular model to investigate the role of niche secreted factors on the maintenance of primary HSCs.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Acar, M., K. S. Kocherlakota, M. M. Murphy, J. G. Peyer, H. Oguro, C. N. Inra, C. Jaiyeola, Z. Zhao, K. Luby-Phelps, and S. J. Morrison. Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature 526:126–130, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Asada, N., Y. Kunisaki, H. Pierce, Z. Wang, N. F. Fernandez, A. Birbrair, A. Maayan, and P. S. Frenette. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat. Cell Biol. 19:214–223, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bartling, B., A. Koch, A. S. Robert, S. R.-E. Silber, and A. N. Santos. Insulin-like growth factor binding proteins-2 and -4 enhance the migration of human CD34−/CD133+ hematopoietic stem and progenitor cells. Int. J. Mol. Med. 25:89–96, 2010.

    CAS  PubMed  Google Scholar 

  4. Boussommier-Calleja, A., Y. Atiyas, K. Haase, M. Headley, C. Lewis, and R. D. Kamm. The effects of monocytes on tumor cell extravasation in a 3D vascularized microfluidic model. Biomaterials 198:180–193, 2019.

    CAS  PubMed  Google Scholar 

  5. Braham, M. V. J., A. S. P. Li Yim, J. Garcia Mateos, M. C. Minnema, W. J. A. Dhert, F. C. Öner, C. Robin, and J. Alblas. A human hematopoietic niche model supporting hematopoietic stem and progenitor cells in vitro. Adv. Healthcare Mater. 8:1801444, 2019.

    Google Scholar 

  6. Bryder, D., D. J. Rossi, and I. L. Weissman. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am. J. Pathol. 169:338–346, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Burke, M. D., J. O. Park, M. Srinivasarao, and S. A. Khan. A novel enzymatic technique for limiting drug mobility in a hydrogel matrix. J. Controlled Rel. 104:141–153, 2005.

    CAS  Google Scholar 

  8. Butler, J. M., D. J. Nolan, E. L. Vertes, B. Varnum-Finney, H. Kobayashi, A. T. Hooper, M. Seandel, K. Shido, I. A. White, M. Kobayashi, L. Witte, C. May, C. Shawber, Y. Kimura, J. Kitajewski, Z. Rosenwaks, I. D. Bernstein, and S. Rafii. Endothelial cells are essential for the self-renewal and repopulation of notch-dependent hematopoietic stem cells. Cell Stem Cell 6:251–264, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Campisi, M., Y. Shin, T. Osaki, C. Hajal, V. Chiono, and R. D. Kamm. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 180:117–129, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Carlson, P., A. Dasgupta, C. A. Grzelak, J. Kim, A. Barrett, I. M. Coleman, R. E. Shor, E. T. Goddard, J. Dai, E. M. Schweitzer, A. R. Lim, S. B. Crist, D. A. Cheresh, P. S. Nelson, K. C. Hansen, and C. M. Ghajar. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol. 21:238–250, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Çelebi, B., D. Mantovani, and N. Pineault. Insulin-like growth factor binding protein-2 and neurotrophin 3 synergize together to promote the expansion of hematopoietic cells ex vivo. Cytokine 58:327–331, 2012.

    PubMed  Google Scholar 

  12. Challen, G. A., N. Boles, K. K. Lin, and M. A. Goodell. Mouse hematopoietic stem cell identification and analysis. Cytom Part A 75:14–24, 2009.

    Google Scholar 

  13. Cheuk, D. K. Optimal stem cell source for allogeneic stem cell transplantation for hematological malignancies. World J. Transplant. 3:99–112, 2013.

    PubMed  PubMed Central  Google Scholar 

  14. Chou, S., and H. F. Lodish. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells. PNAS 107:7799–7804, 2010.

    CAS  PubMed  Google Scholar 

  15. Christodoulou, C., J. A. Spencer, S.-C. A. Yeh, R. Turcotte, K. D. Kokkaliaris, R. Panero, A. Ramos, G. Guo, N. Seyedhassantehrani, T. V. Esipova, S. A. Vinogradov, S. Rudzinskas, Y. Zhang, A. S. Perkins, S. H. Orkin, R. A. Calogero, T. Schroeder, C. P. Lin, and F. D. Camargo. Live-animal imaging of native haematopoietic stem and progenitor cells. Nature 578:278–283, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Crosby, C., D. Valliappan, S. K. David Shu, W. D. Chengyi Tu, S. H. Parekh, and J. Zoldan. Quantifying the vasculogenic potential of induced pluripotent stem cell-derived endothelial progenitors in collagen hydrogels. Tissue Eng. Part A 25:746–758, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Crosby, C. O., and J. Zoldan. An in vitro 3D model and computational pipeline to quantify the vasculogenic potential of iPSC-derived endothelial progenitors. J. Vis. Exp. 2019. https://doi.org/10.3791/59342.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Danby, R., and V. Rocha. Improving engraftment and immune reconstitution in umbilical cord blood transplantation. Front. Immunol. 5:68, 2014.

    PubMed  PubMed Central  Google Scholar 

  19. Derakhshani, M., H. Abbaszadeh, A. A. Movassaghpour, A. Mehdizadeh, M. Ebrahimi-Warkiani, and M. Yousefi. Strategies for elevating hematopoietic stem cells expansion and engraftment capacity. Life Sci. 232:116598, 2019.

    CAS  PubMed  Google Scholar 

  20. Ding, L., T. L. Saunders, G. Enikolopov, and S. J. Morrison. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481:457–462, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. D’Souza, A., S. Lee, X. Zhu, and M. Pasquini. Current use and trends in hematopoietic cell transplantation in the United States. Biol Blood Marrow Transplant. 23:1417–1421, 2017.

    PubMed  PubMed Central  Google Scholar 

  22. Easteal, A. J., W. E. Price, and L. A. Woolf. Diaphragm cell for high-temperature diffusion measurements Tracer Diffusion coefficients for water to 363 K. J. Chem. Soc. Faraday Trans. 1(85):1091–1097, 1989.

    Google Scholar 

  23. Fleming, H. E., V. Janzen, C. LoCelso, J. Guo, K. M. Leahy, H. M. Kronenberg, and D. T. Scadden. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2:274–283, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghajar, C. M., H. Peinado, H. Mori, I. R. Matei, K. J. Evason, H. Brazier, D. Almeida, A. Koller, K. A. Hajjar, D. Y. R. Stainier, E. I. Chen, D. Lyden, and M. J. Bissell. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15:807, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gilchrist A. E., Harley B. Connecting secretome to hematopoietic stem cell phenotype shifts in an engineered bone marrow niche. Integr Biol (Camb). 12(7):175–187, 2020.

    PubMed  Google Scholar 

  26. Gilchrist, A. E., S. Lee, Y. Hu, and B. A. C. Harley. Soluble signals and remodeling in a synthetic gelatin-based hematopoietic stem cell niche. Adv. Healthcare Mater. 8:1900751, 2019.

    CAS  Google Scholar 

  27. Gomei, Y., Y. Nakamura, H. Yoshihara, K. Hosokawa, H. Iwasaki, T. Suda, and F. Arai. Functional differences between two Tie2 ligands, angiopoietin-1 and -2, in regulation of adult bone marrow hematopoietic stem cells. Exp. Hematol. 38:82–89.e1, 2010.

    CAS  PubMed  Google Scholar 

  28. Goncalves, K. A., L. Silberstein, S. Li, N. Severe, M. G. Hu, H. Yang, D. T. Scadden, and G.-F. Hu. Angiogenin promotes hematopoietic regeneration by dichotomously regulating quiescence of stem and progenitor cells. Cell 166:894–906, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Haase, K., M. R. Gillrie, C. Hajal, and R. D. Kamm. Pericytes contribute to dysfunction in a human 3D model of placental microvasculature through VEGF-Ang-Tie2 signaling. Adv. Sci. (Weinh) 6:1900878, 2019.

    CAS  Google Scholar 

  30. Hagman, J., N. Lorén, and A.-M. Hermansson. Effect of gelatin gelation kinetics on probe diffusion determined by FRAP and rheology. Biomacromolecules 11:3359–3366, 2010.

    CAS  PubMed  Google Scholar 

  31. Himburg, H. A., P. L. Doan, M. Quarmyne, X. Yan, J. Sasine, L. Zhao, G. V. Hancock, J. Kan, K. A. Pohl, E. Tran, N. J. Chao, J. R. Harris, and J. P. Chute. Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat. Med. 23:91, 2016.

    PubMed  PubMed Central  Google Scholar 

  32. Huynh, H., J. Zheng, M. Umikawa, C. Zhang, R. Silvany, S. Iizuka, M. Holzenberger, W. Zhang, and C. C. Zhang. IGF binding protein 2 supports the survival and cycling of hematopoietic stem cells. Blood 118:3236–3243, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim, A. A., T. Yahata, M. Onizuka, T. Dan, C. van Ypersele De Strihou, T. Miyata, and K. Ando. Inhibition of plasminogen activator inhibitor type-1 activity enhances rapid and sustainable hematopoietic regeneration. Stem Cells 32:946–958, 2014.

    CAS  PubMed  Google Scholar 

  34. Itkin, T., S. Gur-Cohen, J. A. Spencer, A. Schajnovitz, S. K. Ramasamy, A. P. Kusumbe, G. Ledergor, Y. Jung, I. Milo, M. G. Poulos, A. Kalinkovich, A. Ludin, O. Kollet, G. Shakhar, J. M. Butler, S. Rafii, R. H. Adams, D. T. Scadden, C. P. Lin, and T. Lapidot. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532:323–328, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Janes, K., J. Kelly, S. Gaudet, J. Albeck, P. Sorger, and D. Lauffenburger. Cue-signal-response analysis of TNF-induced apoptosis by partial least squares regression of dynamic multivariate data. J. Comput. Biol. 11:544–561, 2004.

    CAS  PubMed  Google Scholar 

  36. Jansen, L. E., N. P. Birch, J. D. Schiffman, A. J. Crosby, and S. R. Peyton. Mechanics of intact bone marrow. J. Mech. Behav. Biomed. Mater. 50:299–307, 2015.

    PubMed  PubMed Central  Google Scholar 

  37. Jeon, J. S., S. Bersini, M. Gilardi, G. Dubini, J. L. Charest, M. Moretti, and R. D. Kamm. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. USA 112:214–219, 2015.

    CAS  PubMed  Google Scholar 

  38. Jönsson, P., M. P. Jonsson, J. O. Tegenfeldt, and F. Höök. A method improving the accuracy of fluorescence recovery after photobleaching analysis. Biophys. J. 95:5334–5348, 2008.

    PubMed  PubMed Central  Google Scholar 

  39. Kirito, K., N. Fox, and K. Kaushansky. Thrombopoietin stimulates Hoxb4 expression: an explanation for the favorable effects of TPO on hematopoietic stem cells. Blood 102:3172–3178, 2003.

    PubMed  Google Scholar 

  40. Kobayashi, H., J. M. Butler, R. O’Donnell, M. Kobayashi, B. S. Ding, B. Bonner, V. K. Chiu, D. J. Nolan, K. Shido, L. Benjamin, and S. Rafii. Angiocrine factors from Akt-activated endothelial cells balance self-renewal and differentiation of haematopoietic stem cells. Nat. Cell Biol. 12:1046–1056, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kreeger, P. K. Using partial least squares regression to analyze cellular response data. Sci. Signal 6:tr7-tr7, 2013.

    Google Scholar 

  42. Kunisaki, Y., I. Bruns, C. Scheiermann, J. Ahmed, S. Pinho, D. Zhang, T. Mizoguchi, Q. Wei, D. Lucas, K. Ito, J. C. Mar, A. Bergman, and P. S. Frenette. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502:637, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mahadik, B. P., N. A. K. Bharadwaj, R. H. Ewoldt, and B. A. C. Harley. Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. Biomaterials 125:54–64, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mahadik, B. P., S. PedronHaba, L. J. Skertich, and B. A. C. Harley. The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials 67:297–307, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Malhotra, S., and P. W. Kincade. Canonical Wnt pathway signaling suppresses VCAM-1 expression by marrow stromal and hematopoietic cells. Exp. Hematol. 37:19–30, 2009.

    CAS  PubMed  Google Scholar 

  46. McGill, M., J. M. Coburn, B. P. Partlow, X. Mu, and D. L. Kaplan. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design. Acta Biomater. 63:76–84, 2017.

    CAS  PubMed  Google Scholar 

  47. Mendez-Ferrer, S., T. V. Michurina, F. Ferraro, A. R. Mazloom, B. D. Macarthur, S. A. Lira, D. T. Scadden, A. Ma’ayan, G. N. Enikolopov, and P. S. Frenette. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466:829–834, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ngo, M. T., and B. A. Harley. The influence of hyaluronic acid and glioblastoma cell coculture on the formation of endothelial cell networks in gelatin hydrogels. Adv. Healthcare Mater. 6:1700687, 2017.

    Google Scholar 

  49. Ngo, M. T., and B. A. C. Harley. The influence of hyaluronic acid and glioblastoma cell co-culture on the formation of endothelial cell networks in gelatin hydrogels. Adv. Healthcare Mater. 6:1700687, 2017.

    Google Scholar 

  50. Ngo, M. T., and B. A. C. Harley. Perivascular signals alter global gene expression profile of glioblastoma and response to temozolomide in a gelatin hydrogel. Biomaterials 198:122–134, 2019.

    CAS  PubMed  Google Scholar 

  51. Ngo, M. T., E. Karvelis, and B. A. C. Harley. Multidimensional hydrogel models reveal endothelial network angiocrine signals increase glioblastoma cell number, invasion, and temozolomide resistance. Integr. Biol. (Camb) 12:139–149, 2020.

    Google Scholar 

  52. Nilsson, S. K., H. M. Johnston, G. A. Whitty, B. Williams, R. J. Webb, D. T. Denhardt, I. Bertoncello, L. J. Bendall, P. J. Simmons, and D. N. Haylock. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106:1232–1239, 2005.

    CAS  PubMed  Google Scholar 

  53. Nombela-Arrieta, C., G. Pivarnik, B. Winkel, K. J. Canty, B. Harley, J. E. Mahoney, S.-Y. Park, J. Lu, A. Protopopov, and L. E. Silberstein. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat. Cell Biol. 15:533, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Offeddu, G. S., Y. Shin, and R. D. Kamm. Microphysiological models of neurological disorders for drug development. Curr. Opin. Biomed. Eng. 13:119–126, 2020.

    Google Scholar 

  55. Osaki, T., S. G. M. Uzel, and R. D. Kamm. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci. Adv. 1:1, 2018.

    Google Scholar 

  56. Ozdemir, Z. N., and Bozdağ S. Civriz. Graft failure after allogeneic hematopoietic stem cell transplantation. Transfus. Apher. Sci. 57:163–167, 2018.

    PubMed  Google Scholar 

  57. Pedron, S., E. Becka, and B. A. C. Harley. Regulation of glioma cell phenotype in 3D matrices by hyaluronic acid. Biomaterials 34:7408–7417, 2013.

    CAS  PubMed  Google Scholar 

  58. Pedron, S., and B. A. C. Harley. Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. J. Biomed. Mater. Res. Part A 101:3404–3415, 2013.

    CAS  Google Scholar 

  59. Pinho, S., and P. S. Frenette. Haematopoietic stem cell activity and interactions with the niche. Nat. Rev. Mol. Cell Biol. 20:303–320, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Poulos, M. G., M. J. P. Crowley, M. C. Gutkin, P. Ramalingam, W. Schachterle, J. L. Thomas, O. Elemento, and J. M. Butler. Vascular platform to define hematopoietic stem cell factors and enhance regenerative hematopoiesis. Stem Cell Reports 5:881–894, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Poulos Michael, G., P. Guo, M. Kofler Natalie, S. Pinho, C. Gutkin Michael, A. Tikhonova, I. Aifantis, S. Frenette Paul, J. Kitajewski, S. Rafii, and M. Butler Jason. Endothelial jagged-1 Is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 4:1022–1034, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinson, S. N., J. Ng, T. Niu, H. Yang, J. D. McMannis, S. Karandish, I. Kaur, P. Fu, M. Del Angel, R. Messinger, F. Flagge, M. de Lima, W. Decker, D. Xing, R. Champlin, and E. J. Shpall. Superior ex vivo cord blood expansion following co-culture with bone marrow-derived mesenchymal stem cells. Bone Marrow Transplant. 37:359–366, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shirahama, H., B. H. Lee, L. P. Tan, and N.-J. Cho. Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci. Rep. 6:31036, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Silberstein, L., K. A. Goncalves, P. V. Kharchenko, R. Turcotte, Y. Kfoury, F. Mercier, N. Baryawno, N. Severe, J. Bachand, J. A. Spencer, A. Papazian, D. Lee, B. R. Chitteti, E. F. Srour, J. Hoggatt, T. Tate, C. LoCelso, N. Ono, S. Nutt, J. Heino, K. Sipila, T. Shioda, M. Osawa, C. P. Lin, G. F. Hu, and D. T. Scadden. Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell 19:530–543, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Silberstein, L. E., and C. P. Lin. A new image of the hematopoietic stem cell vascular niche. Cell Stem Cell 13:514–516, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Spill, F., D. S. Reynolds, R. D. Kamm, and M. H. Zaman. Impact of the physical microenvironment on tumor progression and metastasis. Curr. Opin. Biotechnol. 40:41–48, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Szklarczyk, D., A. L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N. T. Doncheva, J. H. Morris, P. Bork, L. J. Jensen, and V. Mering Christian. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47:607–613, 2018.

    Google Scholar 

  68. Tian, C., and Y. Zhang. Purification of hematopoietic stem cells from bone marrow. Ann. Hematol. 95:543–547, 2016.

    CAS  PubMed  Google Scholar 

  69. Tsirkinidis, P., E. Terpos, G. Boutsikas, A. Papatheodorou, K. Anargyrou, E. Lalou, A. Dimitrakopoulou, C. Kalpadakis, K. Konstantopoulos, M. Siakantaris, P. Panayiotidis, G. Pangalis, M.-C. Kyrtsonis, T. Vassilakopoulos, and M. K. Angelopoulou. Bone metabolism markers and angiogenic cytokines as regulators of human hematopoietic stem cell mobilization. J. Bone Min. Metab. 36:399–409, 2018.

    CAS  Google Scholar 

  70. Wold, S., M. Sjostrom, and L. Eriksson. PLS-regression: a basic tool of chemometrics. Chemom. Intell Lab. Syst. 58:109–130, 2001.

    CAS  Google Scholar 

  71. Xu, C., X. Gao, Q. Wei, F. Nakahara, S. E. Zimmerman, J. Mar, and P. S. Frenette. Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat. Commun. 9:2449, 2018.

    PubMed  PubMed Central  Google Scholar 

  72. Yahata, T., A. A. Ibrahim, Y. Muguruma, M. Eren, A. M. Shaffer, N. Watanabe, S. Kaneko, T. Nakabayashi, T. Dan, N. Hirayama, D. E. Vaughan, T. Miyata, and K. Ando. TGF-β–induced intracellular PAI-1 is responsible for retaining hematopoietic stem cells in the niche. Blood 130:2283–2294, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang, L., D. Bryder, J. R. Adolfsson, J. Nygren, R. Månsson, M. Sigvardsson, and S. E. W. Jacobsen. Identification of Lin–Sca1+kit+CD34+Flt3– short-term hematopoietic stem cells capable of rapidly reconstituting and rescuing myeloablated transplant recipients. Blood 105:2717–2723, 2005.

    CAS  PubMed  Google Scholar 

  74. Zhang, C. C., M. Kaba, G. Ge, K. Xie, W. Tong, C. Hug, and H. F. Lodish. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat. Med. 12:240–245, 2006.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Barbara Pilas of the Roy J. Carver Biotechnology Center (Flow Cytometry Facility, UIUC) for assistance with bone marrow cell isolation and flow cytometry. Research reported in this publication was supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health under Award Numbers R01 DK099528 (B.A.C.H), as well as by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under Award Numbers R21 EB018481 (B.A.C.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The authors are also grateful for additional funding provided by the Department of Chemical & Biomolecular Engineering and the Institute for Genomic Biology at the University of Illinois at Urbana-Champaign. The authors would like to acknowledge Zona Hrnjak and Aidan Gilchrist for the development of a custom Matlab code for rapid analysis of mechanical testing data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan Harley.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 3119 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barnhouse, V., Petrikas, N., Crosby, C. et al. Perivascular Secretome Influences Hematopoietic Stem Cell Maintenance in a Gelatin Hydrogel. Ann Biomed Eng 49, 780–792 (2021). https://doi.org/10.1007/s10439-020-02602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02602-0

Keywords

  • Tissue engineering
  • Biomaterial niche
  • Hematopoietic stem cell