Skip to main content
Log in

Evaluation of the Stress–Growth Hypothesis in Saphenous Vein Perfusion Culture

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The great saphenous vein (GSV) has served as a coronary artery bypass graft (CABG) conduit for over 50 years. Despite prevalent use, first-year failure rates remain high compared to arterial autograft options. Amongst other factors, vein graft failure can be attributed to material and mechanical mismatching that lead to apoptosis, inflammation, and intimal-medial hyperplasia. Through the implementation of the continuum mechanical-based theory of “stress-mediated growth and remodeling,” we hypothesize that the mechanical properties of porcine GSV grafts can be favorably tuned for CABG applications prior to implantation using a prolonged but gradual transition from venous to arterial loading conditions in an inflammatory and thrombogenic deficient environment. To test this hypothesis, we used a hemodynamic-mimetic perfusion bioreactor to guide remodeling through stepwise incremental changes in pressure and flow over the course of 21-day cultures. Biaxial mechanical testing of vessels pre- and post-remodeling was performed, with results fit to structurally-motivated constitutive models using non-parametric bootstrapping. The theory of “small-on-large” was used to describe appropriate stiffness moduli, while histology and viability assays confirmed microstructural adaptations and vessel viability. Results suggest that stepwise transition from venous-to-arterial conditions results in a partial restoration of circumferential stretch and circumferential, but not axial, stress through vessel dilation and wall thickening in a primarily outward remodeling process. These remodeled tissues also exhibited decreased mechanical isotropy and circumferential, but not axial, stiffening. In contrast, only increases in axial stiffness were observed using culture under venous perfusion conditions and those tissues experienced moderate intimal resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Baek, S., R. L. Gleason, K. R. Rajagopal, and J. D. Humphrey. Theory of small on large: potential utility in computations of fluid–solid interactions in arteries. Comput. Methods Appl. Mech. Eng. 196:3070–3078, 2007.

    Google Scholar 

  2. Bellini, C., J. Ferruzzi, S. Roccabianca, E. S. Di Martino, and J. D. Humphrey. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann. Biomed. Eng. 42:488–502, 2014.

    CAS  PubMed  Google Scholar 

  3. Benedetto, U., S. G. Raja, A. Albanese, M. Amrani, G. Biondi-Zoccai, and G. Frati. Searching for the second best graft for coronary artery bypass surgery: a network meta-analysis of randomized controlled trials. Eur. J. Cardiothorac. Surg. 47:59–65, 2015.

    PubMed  Google Scholar 

  4. Bersi, M. R., J. Ferruzzi, J. F. Eberth, R. L. Gleason, Jr, and J. D. Humphrey. Consistent biomechanical phenotyping of common carotid arteries from seven genetic, pharmacological, and surgical mouse models. Ann. Biomed. Eng. 42:1207–1223, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Carey, J. S., B. Danielsen, J. Milliken, Z. Li, and B. E. Stabile. Narrowing the gap: early and intermediate outcomes after percutaneous coronary intervention and coronary artery bypass graft procedures in California, 1997 to 2006. J. Thorac. Cardiovasc. Surg. 138:1100–1107, 2009.

    PubMed  Google Scholar 

  6. Chen, Y. C., and J. F. Eberth. Constitutive function, residual stress, and state of uniform stress in arteries. J. Mech. Phys. Solids 60:1145–1157, 2012.

    Google Scholar 

  7. Cyron, C. J., and J. D. Humphrey. Growth and remodeling of load-bearing biological soft tissues. Meccanica 52:645–664, 2017.

    CAS  PubMed  Google Scholar 

  8. de Vries, M. R., K. H. Simons, J. W. Jukema, J. Braun, and P. H. A. Quax. Vein graft failure: from pathophysiology to clinical outcomes. Nat. Rev. Cardiol. 13:451–470, 2016.

    PubMed  Google Scholar 

  9. Dummler, S., S. Eichhorn, C. Tesche, U. Schreiber, B. Voss, M. A. Deutsch, H. Hauner, H. Lahm, R. Lange, and M. Krane. Pulsatile ex vivo perfusion of human saphenous vein grafts under controlled pressure conditions increases MMP-2 expression. Biomed. Eng. Online 10:62, 2011.

    PubMed  PubMed Central  Google Scholar 

  10. Eberth, J. F., N. Popovic, V. C. Gresham, E. Wilson, and J. D. Humphrey. Time course of carotid artery growth and remodeling in response to altered pulsatility. Am. J. Physiol. Hear. Circ. Physiol. 299:H1875–H1883, 2010.

    CAS  Google Scholar 

  11. Eberth, J. F., A. I. Taucer, E. Wilson, and J. D. Humphrey. Mechanics of carotid arteries in a mouse model of marfan syndrome. Ann. Biomed. Eng. 37:1093–1104, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferruzzi, J., M. R. Bersi, and J. D. Humphrey. Biomechanical phenotyping of central arteries in health and disease: advantages of and methods for murine models. Ann. Biomed. Eng. 41:1311–1330, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferruzzi, J., D. A. Vorp, and J. D. Humphrey. On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J. R. Soc. Interface 8:435–450, 2011.

    CAS  PubMed  Google Scholar 

  14. Fung, Y. C. What are the residual stresses doing in our blood vessels? Ann. Biomed. Eng. 19:237–249, 1991.

    CAS  PubMed  Google Scholar 

  15. Fung, Y. C., and S. Q. Liu. Strain distribution in small blood vessels with zero-stress state taken into consideration. Am. J. Physiol. 262:H544–H552, 1992.

    CAS  PubMed  Google Scholar 

  16. Goldman, S., K. Zadina, T. Moritz, T. Ovitt, G. Sethi, J. G. Copeland, L. Thottapurathu, B. Krasnicka, N. Ellis, R. J. Anderson, and W. Henderson. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 44:2149–2156, 2004.

    PubMed  Google Scholar 

  17. Gomez, D., and G. K. Owens. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res. 95:156–164, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gooch, K. J., M. S. Firstenberg, B. S. Shrefler, and B. W. Scandling. Biomechanics and mechanobiology of saphenous vein grafts. J. Biomech. Eng. 140:020804, 2018.

    Google Scholar 

  19. Gusic, R. J., R. Myung, M. Petko, J. W. Gaynor, and K. J. Gooch. Shear stress and pressure modulate saphenous vein remodeling ex vivo. J. Biomech. 38:1760–1769, 2005.

    PubMed  Google Scholar 

  20. Gusic, R. J., M. Petko, R. Myung, J. William Gaynor, and K. J. Gooch. Mechanical properties of native and ex vivo remodeled porcine saphenous veins. J Biomech 38:1770–1779, 2005.

    PubMed  Google Scholar 

  21. Hocking, K. M., B. Sileshi, F. J. Baudenbacher, R. B. Boyer, K. L. Kohorst, C. M. Brophy, and S. S. Eagle. Peripheral venous waveform analysis for detecting hemorrhage and iatrogenic volume overload in a porcine model. Shock 46:447–452, 2016.

    PubMed  Google Scholar 

  22. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. solids 61:1–48, 2000.

    Google Scholar 

  23. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2002.

    Google Scholar 

  24. Humphrey, J. D., J. F. Eberth, W. W. Dye, and R. L. Gleason. Fundamental role of axial stress in compensatory adaptations by arteries. J. Biomech. 42:1–8, 2009.

    CAS  PubMed  Google Scholar 

  25. Kamenskiy, A., A. Seas, P. Deegan, W. Poulson, E. Anttila, S. Sim, A. Desyatova, and J. MacTaggart. Constitutive description of human femoropopliteal artery aging. Biomech. Model. Mechanobiol. 16:681–692, 2017.

    PubMed  Google Scholar 

  26. Kamiya, A., and T. Togawa. Adaptive regulation of wall shear stress to flow change in the canine carotid artery. Am. J. Physiol. 239:H14–H21, 1980.

    CAS  PubMed  Google Scholar 

  27. Kassab, G. S., and J. A. Navia. Biomechanical considerations in the design of graft: the homeostasis hypothesis. Annu. Rev. Biomed. Eng. 8:499–535, 2006.

    CAS  PubMed  Google Scholar 

  28. Kinsky, M., N. Ribeiro, M. Cannesson, D. Deyo, G. Kramer, M. Salter, M. Khan, H. Ju, and W. E. Johnston. Peripheral venous pressure as an indicator of preload responsiveness during volume resuscitation from hemorrhage. Anesth. Analg. 123:114–122, 2016.

    PubMed  Google Scholar 

  29. Langleben, D., J. L. Szarek, J. T. Coflesky, R. C. Jones, L. M. Reid, and J. N. Evans. Altered artery mechanics and structure in monocrotaline pulmonary hypertension. J. Appl. Physiol. 65:2326–2331, 1988.

    CAS  PubMed  Google Scholar 

  30. Latorre, M., and J. D. Humphrey. Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension. Biomech. Model. Mechanobiol. 17:1497–1511, 2018.

    PubMed  PubMed Central  Google Scholar 

  31. Matsumoto, T., and K. Hayashi. Mechanical and dimensional adaptation of rat aorta to hypertension. J. Biomech. Eng. 116:278–283, 1994.

    CAS  PubMed  Google Scholar 

  32. McAnulty, R. J., and G. J. Laurent. Collagen synthesis and degradation in vivo. Evidence for rapid rates of collagen turnover with extensive degradation of newly synthesized collagen in tissues of the adult rat. Coll. Relat. Res. 7:93–104, 1987.

    CAS  PubMed  Google Scholar 

  33. Parang, P., and R. Arora. Coronary vein graft disease: pathogenesis and prevention. Can. J. Cardiol. 25:e57–e62, 2009.

    PubMed  PubMed Central  Google Scholar 

  34. Prim, D. A., V. Menon, S. Hasanian, L. Carter, T. Shazly, J. D. Potts, and J. F. Eberth. Perfusion tissue culture initiates differential remodeling of internal thoracic arteries, radial arteries, and saphenous veins. J. Vasc. Res. 55:255–267, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Prim, D. A., M. A. Mohamed, B. A. Lane, K. Poblete, M. A. Wierzbicki, S. M. Lessner, T. Shazly, and J. F. Eberth. Comparative mechanics of diverse mammalian carotid arteries. PLoS ONE 13:e0202123, 2018.

    PubMed  PubMed Central  Google Scholar 

  36. Prim, D. A., J. Potts, and J. F. Eberth. Pulsatile perfusion bioreactor for biomimetic vascular impedances. J. Med. Device. 12:041002, 2018.

    Google Scholar 

  37. Prim, D. A., B. Zhou, A. Hartstone-Rose, M. J. Uline, T. Shazly, and J. F. Eberth. A mechanical argument for the differential performance of coronary artery grafts. J. Mech. Behav. Biomed. Mater. 54:93–105, 2016.

    CAS  PubMed  Google Scholar 

  38. Ramachandra, A. B., J. D. Humphrey, and A. L. Marsden. Gradual loading ameliorates maladaptation in computational simulations of vein graft growth and remodelling. J. R. Soc. Interface 14:20160995, 2017.

    PubMed  PubMed Central  Google Scholar 

  39. Rensen, S. S. M., P. A. F. M. Doevendans, and G. J. J. M. van Eys. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth. Heart J. 15:100–108, 2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ross, M., and W. Pawlina. Histology: A Text and Atlas. Philadelphia: Wolters Kluwer, pp. 184–191, 2004.

    Google Scholar 

  41. Sodek, J., and J. M. Ferrier. Collagen remodelling in rat periodontal tissues: compensation for precursor reutilization confirms rapid turnover of collagen. Coll. Relat. Res. 8:11–21, 1988.

    CAS  PubMed  Google Scholar 

  42. Van Loon, P. Length-force and volume-pressure relationships of arteries. Biorheology 14:181–201, 1976.

    Google Scholar 

  43. Yin, F. C. P., P. H. Chew, and S. L. Zeger. An approach to quantification of biaxial tissue stress–strain data. J. Biomech. 19:27–37, 1986.

    CAS  PubMed  Google Scholar 

  44. Zhou, B., D. A. Prim, E. J. Romito, L. P. McNamara, F. G. Spinale, T. Shazly, and J. F. Eberth. Contractile smooth muscle and active stress generation in porcine common carotids. J. Biomech. Eng. 140:014501, 2018.

    Google Scholar 

  45. Zhou, B., L. Wolf, A. Rachev, and T. Shazly. A structure-motivated model of the passive mechanical response of the primary porcine renal artery. J. Mech. Med. Biol. 14:1450033, 2014.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the contributions of Boran Zhou (PhD), Shahd Hasanain (BS), Colton Kostelnik (BS), Laurel Carter (MD) and Nicole Carey (MD) for their technological contributions to the project.

Funding

This work is supported by the National Institutes of Health under Grant Numbers (R21 EB022131, R01HL133662, and P20GM103444).

Conflicts of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Eberth.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prim, D.A., Lane, B.A., Ferruzzi, J. et al. Evaluation of the Stress–Growth Hypothesis in Saphenous Vein Perfusion Culture. Ann Biomed Eng 49, 487–501 (2021). https://doi.org/10.1007/s10439-020-02582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02582-1

Keywords

Navigation