Validity of Using Automated Two-Dimensional Video Analysis to Measure Continuous Sagittal Plane Running Kinematics


Two-dimensional video analysis is commonly used to assess kinematics when three-dimensional motion capture is unavailable. However, videos are often assessed using manual digitization, which limits the ability to extract outcomes that require continuous data. Here, we introduced a method to collect continuous kinematic data in 2D using an inexpensive camera and an open-source automated marker tracking program. We tested the validity of this method by comparing 2D video analysis to 3D motion capture for measuring sagittal-plane running kinematics. Twenty uninjured participants ran on a treadmill for 1-min while lower extremity kinematics were collected simultaneously in 3D using a motion capture system and in 2D using a single digital camera, both at 120 Hz. Knee, ankle, and foot angle at contact, peak knee flexion, knee flexion excursion, and knee-ankle flexion vector coding variability were computed using both the 3D and 2D kinematic data, and were compared using intraclass correlation coefficients and Bland-Altman plots. The agreement between collection methods was excellent for foot angle at contact and knee flexion excursion, good for ankle and knee angle at contact and knee-ankle vector coding variability, and moderate for peak knee flexion. However, Bland-Altman plots revealed significant differences between the 2D and 3D collection methods, which varied across study participants. These low-cost methods could be useful for collecting continuous sagittal plane running kinematics in non-laboratory settings.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1.

    Abdel-Aziz Y. I. and H. M. Karara. Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. Proceedings of the Symposium on Close-Range Photogrammetry 1–18, 1971.

  2. 2.

    Bell, A. L., R. A. Brand, and D. R. Pedersen. Prediction of hip joint centre location from external landmarks. Hum Mov Sci 8:3–16, 1989.

    Article  Google Scholar 

  3. 3.

    Belyea B. C., E. Lewis, Z. Gabor, J. Jackson and D. L. King. Validity and Intrarater Reliability of 2-Dimensional Motion Analysis Using a Handheld Tablet Compared to Traditional 3-Dimensional Motion Analysis. J. Sport Rehabil. 24: 2015.

  4. 4.

    Bramah, C., S. J. Preece, N. Gill, and L. Herrington. Is there a pathological gait associated with common soft tissue running injuries? Am. J. Sports Med. 46:3023–3031, 2018.

    Article  Google Scholar 

  5. 5.

    Churchill, A. J., P. W. Halligan, and D. T. Wade. RIVCAM: a simple video-based kinematic analysis for clinical disorders of gait. Comput. Methods Programs Biomed. 69:197–209, 2002.

    Article  Google Scholar 

  6. 6.

    Cunningham, T. J., D. R. Mullineaux, B. Noehren, R. Shapiro, and T. L. Uhl. Coupling angle variability in healthy and patellofemoral pain runners. Clin. Biomech. (Bristol, Avon) 29:317–322, 2014.

    Article  Google Scholar 

  7. 7.

    Damsted, C., R. O. Nielsen, and L. H. Larsen. Reliability of video-based quantification of the knee- and hip angle at foot strike during running. Int. J. Sports Phys. Ther. 10:147, 2015.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Daoud, A. I., G. J. Geissler, F. Wang, J. Saretsky, Y. A. Daoud, and D. E. Lieberman. Foot strike and injury rates in endurance runners: a retrospective study. Med. Sci. Sports Exerc. 44:1325–1334, 2012.

    Article  Google Scholar 

  9. 9.

    Dierks, T. A., K. T. Manal, J. Hamill, and I. Davis. Lower extremity kinematics in runners with patellofemoral pain during a prolonged run. Med. Sci. Sports Exerc. 43:693–700, 2011.

    Article  Google Scholar 

  10. 10.

    Dingenen, B., C. Barton, T. Janssen, A. Benoit, and P. Malliaras. Test-retest reliability of two-dimensional video analysis during running. Phys. Ther. Sport 33:40–47, 2018.

    Article  Google Scholar 

  11. 11.

    Dingwell, J. B., and L. C. Marin. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39:444–452, 2006.

    Article  Google Scholar 

  12. 12.

    Fellin, R. E., W. C. Rose, T. D. Royer, and I. S. Davis. Comparison of methods for kinematic identification of footstrike and toe-off during overground and treadmill running. J. Sci. Med. Sport 13:646–650, 2010.

    Article  Google Scholar 

  13. 13.

    Fiorentino, N. M., P. R. Atkins, M. J. Kutschke, J. M. Goebel, K. B. Foreman, and A. E. Anderson. Soft tissue artifact causes significant errors in the calculation of joint angles and range of motion at the hip. Gait Posture 55:184–190, 2017.

    Article  Google Scholar 

  14. 14.

    Fiorentino, N. M., M. J. Kutschke, P. R. Atkins, K. B. Foreman, A. L. Kapron, and A. E. Anderson. Accuracy of functional and predictive methods to calculate the hip joint center in young non-pathologic asymptomatic adults with dual fluoroscopy as a reference standard. Ann Biomed Eng 44:2168–2180, 2016.

    Article  Google Scholar 

  15. 15.

    Giavarina, D. Understanding Bland Altman analysis. Biochem Med (Zagreb) 25:141–151, 2015.

    Article  Google Scholar 

  16. 16.

    Hafer, J. F., and K. A. Boyer. Variability of segment coordination using a vector coding technique: reliability analysis for treadmill walking and running. Gait Posture 51:222–227, 2017.

    Article  Google Scholar 

  17. 17.

    Hedrick, T. L. Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir Biomim 3:034001, 2008.

    Article  Google Scholar 

  18. 18.

    Hein, T., T. Schmeltzpfenning, I. Krauss, C. Maiwald, T. Horstmann, and S. Grau. Using the variability of continuous relative phase as a measure to discriminate between healthy and injured runners. Hum Mov Sci 31:683–694, 2012.

    Article  Google Scholar 

  19. 19.

    Holden, S., C. Boreham, C. Doherty, and E. Delahunt. Two-dimensional knee valgus displacement as a predictor of patellofemoral pain in adolescent females. Scand J Med Sci Sports 27:188–194, 2017.

    CAS  Article  Google Scholar 

  20. 20.

    Koo, T. K., and M. Y. Li. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med 15:155–163, 2016.

    Article  Google Scholar 

  21. 21.

    Krosshaug, T., A. Nakamae, B. Boden, L. Engebretsen, G. Smith, J. Slauterbeck, T. E. Hewett, and R. Bahr. Estimating 3D joint kinematics from video sequences of running and cutting maneuvers–assessing the accuracy of simple visual inspection. Gait Posture 26:378–385, 2007.

    Article  Google Scholar 

  22. 22.

    Leppanen, M., K. Pasanen, U. M. Kujala, T. Vasankari, P. Kannus, S. Ayramo, T. Krosshaug, R. Bahr, J. Avela, J. Perttunen, and J. Parkkari. Stiff landings are associated with increased ACL injury risk in young female basketball and floorball players. Am J Sports Med 45:386–393, 2017.

    Article  Google Scholar 

  23. 23.

    Loudon, J. K., and M. P. Reiman. Lower extremity kinematics in running athletes with and without a history of medial shin pain. International journal of sports physical therapy 7:356, 2012.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Miller, R. H., R. Chang, J. L. Baird, R. E. Van Emmerik, and J. Hamill. Variability in kinematic coupling assessed by vector coding and continuous relative phase. J Biomech 43:2554–2560, 2010.

    Article  Google Scholar 

  25. 25.

    Miller, R. H., S. A. Meardon, T. R. Derrick, and J. C. Gillette. Continuous relative phase variability during an exhaustive run in runners with a history of iliotibial band syndrome. J. Appl. Biomech. 24:262–270, 2008.

    Article  Google Scholar 

  26. 26.

    Milner, C. E., J. Hamill, and I. Davis. Are knee mechanics during early stance related to tibial stress fracture in runners? Clin. Biomech. (Bristol, Avon) 22:697–703, 2007.

    Article  Google Scholar 

  27. 27.

    Mousavi, S. H., J. M. Hijmans, F. Moeini, R. Rajabi, R. Ferber, H. van der Worp, and J. Zwerver. Validity and reliability of a smartphone motion analysis app for lower limb kinematics during treadmill running. Phys Ther Sport 43:27–35, 2020.

    Article  Google Scholar 

  28. 28.

    Murray L., C. Beaven and K. Hébert-Losier. Reliability of Overground Running Measures from 2D Video Analyses in a Field Environment. Sports 7: 2018.

  29. 29.

    Neal, B. S., S. D. Lack, C. J. Barton, A. Birn-Jeffery, S. Miller, and D. Morrissey. Is markerless, smart phone recorded two-dimensional video a clinically useful measure of relevant lower limb kinematics in runners with patellofemoral pain? A validity and reliability study. Phys Ther Sport 43:36–42, 2020.

    Article  Google Scholar 

  30. 30.

    Numata, H., J. Nakase, K. Kitaoka, Y. Shima, T. Oshima, Y. Takata, K. Shimozaki, and H. Tsuchiya. Two-dimensional motion analysis of dynamic knee valgus identifies female high school athletes at risk of non-contact anterior cruciate ligament injury. Knee Surg. Sports Traumatol. Arthrosc. 26:442–447, 2018.

    Article  Google Scholar 

  31. 31.

    Paterno, M. V., L. C. Schmitt, K. R. Ford, M. J. Rauh, G. D. Myer, B. Huang, and T. E. Hewett. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 38:1968–1978, 2010.

    Article  Google Scholar 

  32. 32.

    Pipkin, A., K. Kotecki, S. Hetzel, and B. Heiderscheit. Reliability of a qualitative video analysis for running. J. Orthop. Sports Phys. Ther. 46:556–561, 2016.

    Article  Google Scholar 

  33. 33.

    Reinking, M. F., L. Dugan, N. Ripple, K. Schleper, H. Scholz, J. Spadino, C. Stahl, and T. G. McPoil. Reliability of two-dimensional video-based running gait analysis. Int. J. Sports Phys. Ther. 13:453–461, 2018.

    Article  Google Scholar 

  34. 34.

    Riva, F., M. C. Bisi, and R. Stagni. Gait variability and stability measures: minimum number of strides and within-session reliability. Comput. Biol. Med. 50:9–13, 2014.

    CAS  Article  Google Scholar 

  35. 35.

    Scheys, L., K. Desloovere, A. Spaepen, P. Suetens, and I. Jonkers. Calculating gait kinematics using MR-based kinematic models. Gait Posture 33:158–164, 2011.

    Article  Google Scholar 

  36. 36.

    Schurr, S. A., A. N. Marshall, J. E. Resch, and S. A. Saliba. Two-dimensional video analysis is comparable to 3D motion capture in lower extremity movement assessment. International journal of sports physical therapy 12:163, 2017.

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Souza, R. B. An evidence-based videotaped running biomechanics analysis. Phys Med Rehabil Clin N Am 27:217–236, 2016.

    Article  Google Scholar 

  38. 38.

    Ugbolue, U. C., E. Papi, K. T. Kaliarntas, A. Kerr, L. Earl, V. M. Pomeroy, and P. J. Rowe. The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use. Gait Posture 38:483–489, 2013.

    Article  Google Scholar 

  39. 39.

    Zhang Z. A Flexible New Technique for Camera Calibration. IEEE Transactions on pattern analysis and machine intelligence 22: 2000.

Download references

Author information



Corresponding author

Correspondence to Alexander T. Peebles.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peebles, A.T., Carroll, M.M., Socha, J.J. et al. Validity of Using Automated Two-Dimensional Video Analysis to Measure Continuous Sagittal Plane Running Kinematics. Ann Biomed Eng 49, 455–468 (2021).

Download citation


  • Injury prevention
  • Rehabilitation
  • Gait analysis
  • Motion analysis
  • Software development