Skip to main content
Log in

Design and Fabrication of Implants for Mandibular and Craniofacial Defects Using Different Medical-Additive Manufacturing Technologies: A Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mandibular and craniofacial bone defects can be caused by trauma, inflammatory disease, and benign or malignant tumors. Patients with bone defects suffer from problems with aesthetics, speech, and mastication, resulting in the need for implants. Conventional methods do not always provide satisfactory results. Most of the techniques proposed by researchers in the field of biomedical engineering use reverse engineering, computer-aided design (CAD), and additive manufacturing (AM), whose implementation can improve the outcomes of reconstructive surgeries. Several literature reviews on this particular topic have been conducted. However, they provide mostly overviews of AM technologies for general biomedical devices. This paper summarizes the use of existing medical AM techniques for the design and fabrication of mandibular and craniofacial implants, and then discusses their advantages and disadvantages in terms of accuracy, costs, energy consumption, and production rate. The aim of this study is to present a comparative review of the most commonly used AM technologies to aid researchers in selecting the best possible AM technologies for medical use. Studies included in this review contain CAD designs of mandibular or cranial implants, as well as their fabrication using AM technologies. Special attention is paid to PolyJet technology, because of its high accuracy, and economical efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Abdulhameed, O., A. Al-Ahmari, W. Ameen, and S. H. Mian. Additive manufacturing: challenges, trends, and applications. Adv. Mech. Eng. 11(2):168781401882288, 2019.

    Google Scholar 

  2. Abdullah, J. Y., M. Omar, H. M. H. Pritam, A. Husein, and Z. A. Rajion. Comparison of 3D reconstruction of mandible for pre-operative planning using commercial and open-source software. Presented at the Translational Craniofacial Conference, 2016.

  3. Afkhami, S., M. Dabiri, S. H. Alavi, T. Björk, and A. Salminen. Fatigue characteristics of steels manufactured by selective laser melting. Int. J. Fatigue 122:72–83, 2019.

    CAS  Google Scholar 

  4. Alabort, E., D. Barba, and R. C. Reed. Design of metallic bone by additive manufacturing. Scripta Mater. 164:110–114, 2019.

    CAS  Google Scholar 

  5. Ardila, C. C., C. I. Lopez, J. M. Martinez, G. L. Melendez, D. C. Navarro, and C. F. Galeano. Study for development of a patient-specific 3D printed craniofacial medical device: design based on 3D virtual biomodels/CAD/RP. Presented at the 28th CIRP Design Conference, Nantes, France 2018.

  6. Bartolomeu, F., et al. Implant surface design for improved implant stability—a study on Ti6Al4V dense and cellular structures produced by selective laser melting. Tribol. Int. 129:272–282, 2019.

    CAS  Google Scholar 

  7. Bergmann, C., et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J. Eur. Ceram. Soc. 30(12):2563–2567, 2010.

    CAS  Google Scholar 

  8. Bose, S., S. F. Robertson, and A. Bandyopadhyay. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 66:6–22, 2018.

    CAS  PubMed  Google Scholar 

  9. Burton, H. E., S. Peel, and D. Eggbeer. Reporting fidelity in the literature for computer aided design and additive manufacture of implants and guides. Addit. Manuf. 23:362–373, 2018.

    CAS  Google Scholar 

  10. Camardella, L. T., O. de Vasconcellos Vilella, and H. Breuning. Accuracy of printed dental models made with 2 prototype technologies and different designs of model bases. Am. J. Orthod. Dentofacial. Orthop. 151(6):1178–1187, 2017.

    PubMed  Google Scholar 

  11. Chen, L., W. S. Lin, W. D. Polido, G. J. Eckert, and D. Morton. Accuracy, reproducibility, and dimensional stability of additively manufactured surgical templates. J. Prosthet. Dent. 122(3):309–314, 2019.

    PubMed  Google Scholar 

  12. Chennakesava, P., and Y. S. Narayan. Fused deposition modeling—insights. Presented at the International Conference on Advances in Design and Manufacturing, 2014.

  13. Cohen, A., A. Laviv, P. Berman, R. Nashef, and J. Abu-Tair. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. J. Oral Maxillofac. Surg. 108(5):661–666, 2009.

    Google Scholar 

  14. Crivello, J. V., and E. Reichmanis. Photopolymer materials and processes for advanced technologies. Chem. Mater. 26(1):533–548, 2013.

    Google Scholar 

  15. Culmone, C., G. Smit, and P. Breedveld. Additive manufacturing of medical instruments: a state-of-the-art review. Addit. Manuf. 27:461–473, 2019.

    Google Scholar 

  16. Cunningham, Jr, L. L., M. J. Madsen, and G. Peterson. Stereolithographic modeling technology applied to tumor resection. J. Oral Maxillofac. Surg. 63(6):873–878, 2005.

    PubMed  Google Scholar 

  17. Deshpande, M., P. Ambad, S. Kulkarni, H. Sonar, and V. Khanzode. Quality comparison of additive manufacturing and reverse engineering. Presented at the Proceedings of 3rd National Conference on Recent Trends in Mechanical Engineering, 2018.

  18. Dupret-Bories, A., S. Vergez, T. Meresse, F. Brouillet, and G. Bertrand. Contribution of 3D printing to mandibular reconstruction after cancer. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 135(2):133–136, 2018.

    CAS  PubMed  Google Scholar 

  19. Edgar, J., and S. Tint. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, 2nd edition. Johnson Matthey Technol. Rev. 59(3):193–198, 2015.

    Google Scholar 

  20. Ferreira, J. C. Rapid tooling of die DMLS inserts for shoot-squeeze moulding (DISA) system. J. Mater. Process. Technol. 155–156:1111–1117, 2004.

    Google Scholar 

  21. Fiuza, C., S. Fiuza, M. Aramfard, C. Deng, and R. França. Physicochemical characterization of DMLS dental implants. Dent. Mater. 33:e31, 2017.

    Google Scholar 

  22. Galati, M., and L. Iuliano. A literature review of powder-based electron beam melting focusing on numerical simulations. Addit. Manuf. 19:1–20, 2018.

    Google Scholar 

  23. Ganry, L., J. Quilichini, C. M. Bandini, P. Leyder, B. Hersant, and J. P. Meningaud. Three-dimensional surgical modelling with an open-source software protocol: study of precision and reproducibility in mandibular reconstruction with the fibula free flap. Int. J. Oral Maxillofac. Surg. 46(8):946–957, 2017.

    CAS  PubMed  Google Scholar 

  24. Gao, B., Q. Yang, X. Zhao, G. Jin, Y. Ma, and F. Xu. 4D bioprinting for biomedical applications. Trends Biotechnol. 34(9):746–756, 2016.

    CAS  PubMed  Google Scholar 

  25. Gibson, I., et al. The use of rapid prototyping to assist medical applications. Presented at the 10th European Conference on Rapid Prototyping, 2004.

  26. Górski, F., W. Kuczko, and R. Wichniarek. Influence of process parameters on dimensional accuracy of parts manufactured using fused deposition modelling technology. Adv. Sci. Technol. Res. J. 7(19):27–35, 2013.

    Google Scholar 

  27. Haleem, A., M. Javaid, and A. Saxena. Additive manufacturing applications in cardiology: A review. Egypt Heart J. 70(4):433–441, 2018.

    PubMed  PubMed Central  Google Scholar 

  28. Herzog, D., V. Seyda, E. Wycisk, and C. Emmelmann. Additive manufacturing of metals. Acta Mater. 117:371–392, 2016.

    CAS  Google Scholar 

  29. Hieu, L. C., J. V. Sloten, L. T. Hung, L. Khanh, S. Soe, and N. Zlatov. Medical reverse engineering applications and methods. Presented at the 2nd International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development, Bucharest, 2010.

  30. Hieu, L. C., et al. Medical rapid prototyping applications and methods. Assembly Autom. 25(4):284–292, 2005.

    Google Scholar 

  31. Huang, R., et al. Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J. Clean. Prod. 135:1559–1570, 2016.

    CAS  Google Scholar 

  32. Ibrahim, D., et al. Dimensional error of selective laser sintering, three-dimensional printing and PolyJet models in the reproduction of mandibular anatomy. J. Craniomaxillofac. Surg. 37(3):167–173, 2009.

    PubMed  Google Scholar 

  33. Jardini, A. L., et al. Cranial reconstruction: 3D biomodel and custom-built implant created using additive manufacturing. J. Craniomaxillofac. Surg. 42(8):1877–1884, 2014.

    PubMed  Google Scholar 

  34. Javaid, M., and A. Haleem. Additive manufacturing applications in medical cases: a literature based review. Alex. J. Med. 54(4):411–422, 2018.

    Google Scholar 

  35. Javaid, M., and A. Haleem. Current status and challenges of additive manufacturing in orthopaedics: an overview. J. Clin. Orthop. Trauma 10(2):380–386, 2019.

    PubMed  Google Scholar 

  36. Javaid, M., L. Kumar, V. Kumar, and A. Haleem. Product design and development using Polyjet rapid prototyping technology. Control Theory Inf. 5(3):12–20, 2015.

    Google Scholar 

  37. Juneja, M., N. Thakur, D. Kumar, A. Gupta, B. Bajwa, and P. Jindal. Accuracy in dental surgical guide fabrication using different 3-D printing techniques. Addit. Manuf. 22:243–255, 2018.

    CAS  Google Scholar 

  38. Katkar, R. A., R. M. Taft, and G. T. Grant. 3D volume rendering and 3D printing (additive manufacturing). Dent. Clin. N. Am. 62(3):393–402, 2018.

    PubMed  Google Scholar 

  39. Kaur, S. Additive Manufacturing of Upper and Lower Limbs. San Diego: University of California, 2016.

    Google Scholar 

  40. Kelly, C. N., N. T. Evans, C. W. Irvin, S. C. Chapman, K. Gall, and D. L. Safranski. The effect of surface topography and porosity on the tensile fatigue of 3D printed Ti-6Al-4V fabricated by selective laser melting. Mater. Sci. Eng. C Mater. Biol. Appl. 98:726–736, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Klammert, U., U. Gbureck, E. Vorndran, J. Rodiger, P. Meyer-Marcotty, and A. C. Kubler. 3D powder printed calcium phosphate implants for reconstruction of cranial and maxillofacial defects. J. Craniomaxillofac. Surg. 38(8):565–570, 2010.

    PubMed  Google Scholar 

  42. Kozakiewicz, M., T. Wach, P. Szymor, and R. Zielinski. Two different techniques of manufacturing TMJ replacements—a technical report. J. Craniomaxillofac. Surg. 45(9):1432–1437, 2017.

    PubMed  Google Scholar 

  43. Kumar Malyala, S., A. Manmadhachary, Y. Ravi Kumar, and A. Alwala. Manufacturing of patient specific AM medical models for complex surgeries. Mater. Today Proc. 4(2):1134–1139, 2017.

    Google Scholar 

  44. Larsson, M., U. Lindhe, and O. Harrysson. Rapid manufacturing with electron beam melting (EBM)—a manufacturing revolution? In: Solid Freeform Fabrication Symposium Proceedings, edited by D. Bourell et al., Austin, TX, pp. 433–438, 2003.

  45. Layani, M., X. Wang, and S. Magdassi. Novel materials for 3D printing by photopolymerization. Adv. Mater. 30(41):e1706344, 2018.

    PubMed  Google Scholar 

  46. Lee, J. Y., J. An, and C. K. Chua. Fundamentals and applications of 3D printing for novel materials. Applied Mater. Today 7:120–133, 2017.

    Google Scholar 

  47. Lethaus, B., L. Poort, R. Bockmann, R. Smeets, R. Tolba, and P. Kessler. Additive manufacturing for microvascular reconstruction of the mandible in 20 patients. J. Craniomaxillofac. Surg. 40(1):43–46, 2012.

    PubMed  Google Scholar 

  48. Li, J., et al. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting technique and a new sintering technique. J. Mech. Behav. Biomed. Mater. 91:149–158, 2019.

    CAS  PubMed  Google Scholar 

  49. Lin, K., L. Yuan, and D. Gu. Influence of laser parameters and complex structural features on the bio-inspired complex thin-wall structures fabricated by selective laser melting. J. Mater. Process. Technol. 267:34–43, 2019.

    CAS  Google Scholar 

  50. Lipson, H., F. C. Moon, J. Hai, and P. Carlo. 3D printing the history of mechanisms. J. Mech. Eng. 127:1029–1033, 2005.

    Google Scholar 

  51. Loh, G. H., E. Pei, D. Harrison, and M. D. Monzón. An overview of functionally graded additive manufacturing. Addit. Manuf. 23:34–44, 2018.

    CAS  Google Scholar 

  52. Mahmoudi, S. E., et al. Web-based interactive 2D/3D medical image processing and visualization software. Comput. Methods Programs Biomed. 98(2):172–182, 2010.

    PubMed  Google Scholar 

  53. Marcincinova, L. N. Application of fused deposition modelng technology in 3D printing rapid prototyping area. Manuf. Ind. Eng. 11(4):35–37, 2012.

    Google Scholar 

  54. Maroulakos, M., G. Kamperos, L. Tayebi, D. Halazonetis, and Y. Ren. Applications of 3D printing on craniofacial bone repair: a systematic review. J. Dent. 80:1–14, 2019.

    PubMed  Google Scholar 

  55. Matsiushevich, K., C. Belvedere, A. Leardini, and S. Durante. Quantitative comparison of freeware software for bone mesh from DICOM files. J. Biomech. 84:247–251, 2019.

    PubMed  Google Scholar 

  56. Melchels, F. P., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130, 2010.

    CAS  PubMed  Google Scholar 

  57. Mohammed, M. I., A. P. Fitzpatrick, and I. Gibson, Customised design of a patient specific 3D printed whole mandible implant. Presented at The International Conference on Design and Technology, 2017.

  58. Moreno-Madrid, A. P., S. M. Vrech, M. A. Sanchez, and A. P. Rodriguez. Advances in additive manufacturing for bone tissue engineering scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 100:631–644, 2019.

    CAS  PubMed  Google Scholar 

  59. Munir, K. S., Y. Li, and C. Wen. Metallic scaffolds manufactured by selective laser melting for biomedical applications. In: Metallic Foam Bone, edited by C. Wen. Cambridge: Woodhead Publishing, 2017, pp. 1–23.

    Google Scholar 

  60. Narra, S. P., P. N. Mittwede, S. DeVincent Wolf, and K. L. Urish. Additive manufacturing in total joint arthroplasty. Orthop. Clin. N. Am. 50(1):13–20, 2019.

    Google Scholar 

  61. Ngo, T. D., A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Composites B 143:172–196, 2018.

    CAS  Google Scholar 

  62. Olakanmi, E. O., R. F. Cochrane, and K. W. Dalgarno. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog. Mater. Sci. 74:401–477, 2015.

    CAS  Google Scholar 

  63. Oliveira, T. T., and A. C. Reis. Fabrication of dental implants by the additive manufacturing method: a systematic review. J. Prosthet. Dent. 122(3):270–274, 2019.

    PubMed  Google Scholar 

  64. Parthasarathy, J., B. Starly, and S. Raman. A design for the additive manufacture of functionally graded porous structures with tailored mechanical properties for biomedical applications. J. Manuf.Process. 13(2):160–170, 2011.

    Google Scholar 

  65. Patil, A. S., V. D. Hiwarkar, P. K. Verma, and R. K. Khatirkar. Effect of TiB2 addition on the microstructure and wear resistance of Ti–6AI–4V alloy fabricated through direct metal laser sintering (DMLS). J. Alloy. Compd. 777:165–173, 2019.

    CAS  Google Scholar 

  66. Peel, S., D. Eggbeer, A. Sugar, and P. L. Evans. Post-traumatic zygomatic osteotomy and orbital floor reconstruction. Rapid Prototyping Journal 22(6):878–886, 2016.

    Google Scholar 

  67. Polanczyk, A., M. Podgorski, M. Polanczyk, A. Piechota-Polanczyk, C. Neumayer, and L. Stefanczyk. A novel patient-specific human cardiovascular system phantom (HCSP) for reconstructions of pulsatile blood hemodynamic inside abdominal aortic aneurysm. IEEE Access 6:61896–61903, 2018.

    Google Scholar 

  68. Prakash, K. S., T. Nancharaih, and V. V. S. Rao. Additive manufacturing techniques in manufacturing—an overview. Mater. Today Proc. 5(2):3873–3882, 2018.

    CAS  Google Scholar 

  69. Ramirez-Cedillo, E., et al. Process chain for the fabrication of a custom 3D barrier for guided bone regeneration. Procedia CIRP 65:151–156, 2017.

    Google Scholar 

  70. Reddy, G. V., P. Vasamsetty, S. Kumar Malyala, and A. Alwala. Training young maxillofacial surgeons or trainees using additive manufacturing. Mater. Today Proc. 5(2):4046–4049, 2018.

    CAS  Google Scholar 

  71. Rengier, F., et al. 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assist. Radiol. Surg. 5(4):335–341, 2010.

    CAS  PubMed  Google Scholar 

  72. Roos, M. E., J. Claassen, G. Booysen, J. Van de Heever, and R. Y. Seedat. 3D printed titanium prosthesis reconstruction following subtotal maxillectomy for myoepithelial carcinoma—a case report. J. Stomatol. Oral Maxillofac. Surg. 121(2):175–178, 2019.

    PubMed  Google Scholar 

  73. Sahoo, S. An approach toward multiscale modeling of direct metal laser sintering process. Met. Powder Rep. 74(2):72–76, 2019.

    Google Scholar 

  74. Salmi, M., K. S. Paloheimo, J. Tuomi, J. Wolff, and A. Makitie. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. Craniomaxillofac. Surg. 41(7):603–609, 2013.

    PubMed  Google Scholar 

  75. Seitz, H., C. Tille, S. Irsen, G. Bermes, R. Sader, and H.-F. Zeilhofer. Rapid Prototyping models for surgical planning with hard and soft tissue representation. Int. Congr. Ser. 1268:567–572, 2004.

    Google Scholar 

  76. Serin, G., M. Kahya, H. O. Unver, Y. Gulec, N. Durlu, and O. Erogul. A review of additive manufacturing technologies. Presented at the 17th International Conference on Machine Design And Production, Bursa, Turkey, 2016.

  77. Singare, S., L. Dichen, L. Bingheng, L. Yanpu, G. Zhenyu, and L. Yaxiong. Design and fabrication of custom mandible titanium tray based on rapid prototyping. Med. Eng. Phys. 26(8):671–676, 2004.

    PubMed  Google Scholar 

  78. Singh, S., S. Ramakrishna, and R. Singh. Material issues in additive manufacturing: a review. J. Manuf. Process. 25:185–200, 2017.

    Google Scholar 

  79. Siu, T. L., J. M. Rogers, K. Lin, R. Thompson, and M. Owbridge. Custom-made Titanium 3-dimensional printed interbody cages for treatment of osteoporotic fracture-related spinal deformity. World Neurosurg. 111:1–5, 2018.

    PubMed  Google Scholar 

  80. Šokac, M., I. Budak, S. Mirković, Ž. Santoši, D. Movrin, and T. Puškar. The role of advanced 3D technologies and additive manufacturing in designing and manufacturing of customized bone grafts. J. Technol. Plasticity 42(2):33–44, 2017.

    Google Scholar 

  81. Su, A., and S. J. Al’Aref. History of 3D printing. In: 3D Printing Applications in Cardiovascular Medicine. New York: Academic Press, pp. 1–10, 2018.

  82. Thompson, M. K., et al. Design for Additive Manufacturing: trends, opportunities, considerations, and constraints. CIRP Ann. 65(2):737–760, 2016.

    Google Scholar 

  83. Topcic, A., E. Cerjakovic, A. Fajic, and S. Lovric, Rapid prototyping and reverse engineering as tools for re-engineering of manufacturing processes. Proceedings of Improvement of Production by Applying Reengineering in order to Strengthen the Competitiveness of Companies, 2015.

  84. Vaishya, R., V. Vijay, A. Vaish, and A. K. Agarwal. Computed tomography based 3D printed patient specific blocks for total knee replacement. J. Clin. Orthop. Trauma 9(3):254–259, 2018.

    PubMed  PubMed Central  Google Scholar 

  85. Van Kampen, K. A., et al. Biofabrication: from additive manufacturing to bioprinting. In: Encyclopedia of Tissue Engineering and Regenerative Medicine. London: Academic Press, 2019.

  86. Wong, K. V., and A. Hernandez. A review of additive manufacturing. ISRN Mech. Eng. 2012:1–10, 2012.

    Google Scholar 

  87. Wurm, M. C., J. Hagen, E. Nkenke, F. W. Neukam, and T. Schlittenbauer. The fitting accuracy of pre-bend reconstruction plates and their impact on the temporomandibular joint. J. Craniomaxillofac. Surg. 47(1):53–59, 2019.

    PubMed  Google Scholar 

  88. Yang, L., et al. Application of 3D printing in the surgical planning of trimalleolar fracture and doctor-patient communication. Biomed. Res. Int. 2016:2482086, 2016.

    PubMed  PubMed Central  Google Scholar 

  89. Yuan, L., S. Ding, and C. Wen. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact. Mater. 4(1):56–70, 2019.

    PubMed  Google Scholar 

  90. Zhang, J., B. Song, Q. Wei, D. Bourell, and Y. Shi. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J. Mater. Sci. Technol. 35(2):270–284, 2019.

    Google Scholar 

  91. Zhao, X., Q. S. Wei, N. Gao, E. L. Zheng, Y. S. Shi, and S. F. Yang. Rapid fabrication of TiN/AISI 420 stainless steel composite by selective laser melting additive manufacturing. J. Mater. Process. Technol. 270:8–19, 2019.

    CAS  Google Scholar 

  92. Zheng, J. S., et al. Customized skull base-temporomandibular joint combined prosthesis with 3D-printing fabrication for craniomaxillofacial reconstruction: a preliminary study. Int. J. Oral Maxillofac. Surg. 48(11):1440–1447, 2019.

    CAS  PubMed  Google Scholar 

  93. Zhou, L. B., et al. Accurate reconstruction of discontinuous mandible using a reverse engineering/computer-aided design/rapid prototyping technique: a preliminary clinical study. J. Oral Maxillofac. Surg. 68(9):2115–2121, 2010.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support received from Swinburne University of Technology, and School of Software and Electrical Engineering.

Funding

This study did not receive any specific grant from any funding agency in the public, commercial, or non-profit sectors.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajana Miljanovic.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miljanovic, D., Seyedmahmoudian, M., Stojcevski, A. et al. Design and Fabrication of Implants for Mandibular and Craniofacial Defects Using Different Medical-Additive Manufacturing Technologies: A Review. Ann Biomed Eng 48, 2285–2300 (2020). https://doi.org/10.1007/s10439-020-02567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02567-0

Keywords

Navigation