Skip to main content
Log in

Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

3D bioprinting technology is a promising approach for corneal stromal tissue regeneration. In this study, gelatin methacrylate (GelMA) mixed with corneal stromal cells was used as a bioink. The visible light-based stereolithography (SLA) 3D bioprinting method was utilized to print the anatomically similar dome-shaped structure of the human corneal stroma. Two different concentrations of GelMA macromer (7.5 and 12.5%) were tested for corneal stroma bioprinting. Due to high macromer concentrations, 12.5% GelMA was stiffer than 7.5% GelMA, which made it easier to handle. In terms of water content and optical transmittance of the bioprinted scaffolds, we observed that scaffold with 12.5% GelMA concentration was closer to the native corneal stroma tissue. Subsequently, cell proliferation, gene and protein expression of human corneal stromal cells encapsulated in the bioprinted scaffolds were investigated. Cytocompatibility in 12.5% GelMA scaffolds was observed to be 81.86 and 156.11% at day 1 and 7, respectively, which were significantly higher than those in 7.5% GelMA scaffolds. Elongated corneal stromal cells were observed in 12.5% GelMA samples after 7 days, indicating the cell attachment, growth, and integration within the scaffold. The gene expression of collagen type I, lumican and keratan sulfate increased over time for the cells cultured in 12.5% GelMA scaffolds as compared to those cultured on the plastic tissue culture plate. The expression of collagen type I and lumican were also visualized using immunohistochemistry after 28 days. These findings imply that the SLA 3D bioprinting method with GelMA hydrogel bioinks is a promising approach for corneal stroma tissue biofabrication.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Arnalich-Montiel, F., J. L. Alió Del Barrio, and J. L. Alió. Corneal surgery in keratoconus: which type, which technique, which outcomes? Eye Vis. Lond. 3:2, 2016.

    PubMed  PubMed Central  Google Scholar 

  2. Arya, A. D., P. M. Hallur, A. G. Karkisaval, A. Gudipati, S. Rajendiran, V. Dhavale, B. Ramachandran, A. Jayaprakash, N. Gundiah, and A. Chaubey. Gelatin methacrylate hydrogels as biomimetic three-dimensional matrixes for modeling breast cancer invasion and chemoresponse in vitro. ACS Appl. Mater. Interfaces 8:22005–22017, 2016.

    CAS  PubMed  Google Scholar 

  3. Bajaj, P., R. M. Schweller, A. Khademhosseini, J. L. West, and R. Bashir. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 16:247–276, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Baradaran-Rafii, A., M. Eslani, Z. Haq, E. Shirzadeh, M. J. Huvard, and A. R. Djalilian. Current and upcoming therapies for ocular surface chemical njuries. Ocul. Surf. 15:48–64, 2017.

    PubMed  Google Scholar 

  5. Beems, E. M., and J. A. Van Best. Light transmission of the cornea in whole human eyes. Exp. Eye Res. 50:393–395, 1990.

    CAS  PubMed  Google Scholar 

  6. Bulcke, A., B. Bogdanov, N. Rooze, E. Schacht, R. Cornelissen, and H. Berghmans. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1:31–38, 2000.

    Google Scholar 

  7. Celikkin, N., S. Mastrogiacomo, J. Jaroszewicz, X. Walboomers, and W. Swieszkowski. Gelatin methacrylate scaffold for bone tissue engineering: the influence of polymer concentration. J. Biomed. Mater. Res. Part A 106:201–209, 2017.

    Google Scholar 

  8. Claaßen, C., M. H. Claaßen, V. Truffault, L. Sewald, G. E. M. Tovar, K. Borchers, and A. Southan. Quantification of substitution of gelatin methacryloyl: best practice and current pitfalls. Biomacromolecules 19:42–52, 2018.

    PubMed  Google Scholar 

  9. Dong, L., S.-J. Wang, X.-R. Zhao, Y.-F. Zhu, and J.-K. Yu. 3D-printed poly(e-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci. Rep. 7:1–9, 2017.

    Google Scholar 

  10. Dong, Z., Q. Yuan, K. Huang, W. Xu, G. Liu, and Z. Gu. Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv. 9:17737–17744, 2019.

    CAS  Google Scholar 

  11. Duarte Campos, D. F., M. Rohde, M. Ross, P. Anvari, A. Blaeser, M. Vogt, C. Panfil, G. H. F. Yam, J. S. Mehta, H. Fischer, P. Walter, and M. Fuest. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. J. Biomed. Mater. Res. Part A 107:1945–1953, 2019.

    CAS  Google Scholar 

  12. Fagerholm, P., N. S. Lagali, K. Merrett, W. B. Jackson, R. Munger, Y. Liu, J. W. Polarek, M. Söderqvist, and M. Griffith. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci. Transl. Med. 2:46–61, 2010.

    Google Scholar 

  13. Fagerholm, P., N. S. Lagali, J. A. Ong, K. Merrett, W. B. Jackson, J. W. Polarek, E. J. Suuronen, Y. Liu, I. Brunette, and M. Griffith. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials 35:2420–2427, 2014.

    CAS  PubMed  Google Scholar 

  14. Fu, F., Z. Chen, Z. Zhao, H. Wang, L. Shang, Z. Gu, and Y. Zhao. Bio-inspired self-healing structural color hydrogel. Proc. Natl. Acad. Sci. USA 114:5900–5905, 2017.

    CAS  PubMed  Google Scholar 

  15. Ghezzi, C. E., B. Marelli, F. G. Omenetto, J. L. Funderburgh, and D. L. Kaplan. Functional corneal stromal tissue equivalent based on corneal stromal stem cells and multi-layered silk film architecture. PLoS ONE 12:1–18, 2017.

    Google Scholar 

  16. Gouveia, R. M., E. Koudouna, J. Jester, F. Figueiredo, and C. J. Connon. Template curvature influences cell alignment to create improved human corneal tissue equivalents. Adv. Biosyst. 1:1–10, Dec. 2017.

    Google Scholar 

  17. Gregor, A., E. Filová, M. Novák, J. Kronek, H. Chlup, M. Buzgo, V. Blahnová, V. Lukášová, M. Bartoš, A. Nečas, and J. Hošek. Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. J. Biol. Eng. 11:1–21, 2017.

    Google Scholar 

  18. Gungor-Ozkerim, P. S., I. Inci, Y. S. Zhang, A. Khademhosseini, and M. R. Dokmeci. Bioinks for 3D bioprinting: an overview. Biomater. Sci. 6:915–946, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hacioglu, A., H. Yilmazer, and C. B. Ustundag. 3D printing for tissue engineering applications. J. Polytech. 21:221–227, 2018.

    Google Scholar 

  20. Hasan, A., A. Paul, N. E. Vrana, X. Zhao, A. Memic, Y.-S. Hwang, M. R. Dokmeci, and A. Khademhosseini. Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35:7308–7325, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hashmani, K., M. J. Branch, L. E. Sidney, P. S. Dhillon, M. Verma, O. D. Mcintosh, A. Hopkinson, and H. S. Dua. Characterization of corneal stromal stem cells with the potential for epithelial transdifferentiation. Stem Cell Res. Ther. 4:1–13, 2013.

    Google Scholar 

  22. Ho, L. T. Y., A. M. Harris, H. Tanioka, N. Yagi, S. Kinoshita, B. Caterson, A. J. Quantock, R. D. Young, and K. M. Meek. A comparison of glycosaminoglycan distributions, keratan sulphate sulphation patterns and collagen fibril architecture from central to peripheral regions of the bovine cornea. Matrix Biol. 38:59–68, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hwang, C. M., S. Sant, M. Masaeli, N. N. Kachouie, B. Zamanian, S.-H. Lee, and A. Khademhosseini. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication 2:35–43, 2010.

    Google Scholar 

  24. Isaacson, A., S. Swioklo, and C. J. Connon. 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 173:188–193, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kao, W. W.-Y., and C.-Y. Liu. Roles of lumican and keratocan on corneal transparency. Glycoconj. J. 19:275–285, 2002.

    CAS  PubMed  Google Scholar 

  26. Kim, C., J. L. Young, A. W. Holle, K. Jeong, L. G. Major, J. H. Jeong, Z. M. Aman, D.-W. Han, Y. Hwang, J. P. Spatz, and Y. S. Choi. Stem cell mechanosensation on gelatin methacryloyl (GelMA) stiffness gradient hydrogels. Ann. Biomed. Eng. 48:893–902, 2020.

    PubMed  Google Scholar 

  27. Koo, S., S. J. Ahn, H. Zhang, J. C. Wang, and E. K. F. Yim. Human corneal keratocyte response to micro-and nano-gratings on chitosan and PDMS. Cell. Mol. Bioeng. 4:399–410, 2011.

    CAS  Google Scholar 

  28. Kuete, V., O. Karaosmanoğlu, and H. Sivas. Chapter 10—anticancer activities of african medicinal spices and vegetables. In: Medical Spices and Vegetables from Africa, edited by A. Kuete. New York: Elsevier, 2017, pp. 271–297.

    Google Scholar 

  29. Lee, J.-H., and H.-W. Kim. Emerging properties of hydrogels in tissue engineering. J. Tissue Eng. 2018. https://doi.org/10.1177/2041731418768285.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee, S.-J., W. Zhu, N. Castro, and L. G. Zhang. Biomaterials and 3D printing techniques for neural tissue regeneration. In: Neural Engineering: From Advanced Biomaterials to 3D Fabrication Techniques, edited by L. Zhang, and D. L. Kaplan. Geneva: Springer, 2016.

    Google Scholar 

  31. Li, F., D. Carlsson, C. Lohmann, E. Suuronen, S. Vascotto, K. Kobuch, H. Sheardown, R. Munger, M. Nakamura, and M. Griffith. Cellular and nerve regeneration within a biosynthetic extracellular matrix for corneal transplantation. Proc. Natl. Acad. Sci. USA 100:15346–15351, 2003.

    CAS  PubMed  Google Scholar 

  32. Liu, J., H. Zheng, P. S. P. Poh, H.-G. Machens, and A. F. Schilling. Hydrogels for engineering of perfusable vascular networks. Int. J. Mol. Sci. 16:15997–16016, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ludwig, P. E., T. J. Huff, and J. M. Zuniga. The potential role of bioengineering and three-dimensional printing in curing global corneal blindness. J. Tissue Eng. 9:1–10, 2018.

    CAS  Google Scholar 

  34. Mahajan, S. D., W.-C. Law, R. Aalinkeel, J. Reynolds, B. B. Nair, K.-T. Yong, I. Roy, P. N. Prasad, and S. A. Schwartz. Chapter three—nanoparticle-mediated targeted delivery of antiretrovirals to the brain. In: Methods in Enzymology, edited by E. Düzgüneş. New York: Elsevier, 2012, pp. 41–60.

    Google Scholar 

  35. Massie, I., A. K. Kureshi, S. Schrader, A. J. Shortt, and J. T. Daniels. Optimization of optical and mechanical properties of real architecture for 3-dimensional tissue equivalents: towards treatment of limbal epithelial stem cell deficiency. Acta Biomater. 24:241–250, 2015.

    PubMed  PubMed Central  Google Scholar 

  36. McHale, M. K., N. M. Bergmann, and J. L. West. Chapter 38—histogenesis in three-dimensional scaffolds. In: Principles of Regenerative Medicine3rd, edited by A. Atala, R. Lanza, A. G. Mikos, and R. Nerem. Boston: Academic Press, 2019, pp. 661–674.

    Google Scholar 

  37. Merrett, K., P. Fagerholm, C. R. McLaughlin, S. Dravida, N. Lagali, N. Shinozaki, M. A. Watsky, R. Munger, Y. Kato, F. Li, C. J. Marmo, and M. Griffith. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Investig. Ophthalmol. Vis. Sci. 49:3887–3894, 2008.

    Google Scholar 

  38. Nagymihály, R., Z. Veréb, A. Facskó, M. C. Moe, and G. Petrovski. Effect of isolation technique and location on the phenotype of human corneal stroma-derived cells. Stem Cells Int. 2017. https://doi.org/10.1155/2017/9275248.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nichol, J. W., S. T. Koshy, H. Bae, C. M. Hwang, S. Yamanlar, and A. Khademhosseini. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31:5536–5544, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nikkhah, M., M. Akbari, A. Paul, A. Memic, A. Dolatshahi-Pirouz, and A. Khademhosseini. Gelatin-based biomaterials for tissue engineering and stem cell bioengineering. In: Biomaterials from Nature for Advanced Devices and Therapies, edited by N. Nevesm, and R. Reis. Wiley: New York, 2016, pp. 37–62.

    Google Scholar 

  41. Patel, S., J. L. Alió, J. Javaloy, J. J. Perez-Santonja, A. Artola, and J. Rodriguez-Prats. Human cornea before and after refractive surgery using a new device: vCH-1. Cornea 27:1042–1049, 2008.

    PubMed  Google Scholar 

  42. Patel, S., and L. Tutchenko. The refractive index of the human cornea: a review. Contact Lens Anterior Eye 42:575–580, 2019.

    PubMed  Google Scholar 

  43. Pereira, R. F., and P. J. Bártolo. 3D bioprinting of photocrosslinkable hydrogel constructs. J. Appl. Polym. Sci. 2015. https://doi.org/10.1002/app.42458.

    Article  Google Scholar 

  44. Radaei, P., S. Mashayekhan, and S. Vakilian. Modeling and optimization of gelatin-chitosan micro-carriers preparation for soft tissue engineering: using response surface methodology. Mater. Sci. Eng. C 75:545–553, 2017.

    CAS  Google Scholar 

  45. Raman, R., and R. Bashir. Stereolithographic 3D bioprinting for biomedical applications. In: Essentials of 3D Biofabrication and Translation, edited by A. Atala, and J. J. Yoo. Cambridge: Academic Press, 2015, pp. 89–121.

    Google Scholar 

  46. Reinstein, D. Z., T. J. Archer, M. Gobbe, R. H. Silverman, and D. J. Coleman. Stromal thickness in the normal cornea: three-dimensional display with artemis very high-frequency digital ultrasound. J. Refract. Surg. 25:776–786, 2009.

    PubMed  PubMed Central  Google Scholar 

  47. Rizwan, M., G. S. L. Peh, H. P. Ang, N. C. Lwin, K. Adnan, J. S. Mehta, W. S. Tan, and E. K. F. Yim. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials 120:139–154, 2017.

    CAS  PubMed  Google Scholar 

  48. Rose, J. B., S. Pacelli, A. J. El Haj, H. S. Dua, A. Hopkinson, L. J. White, and F. R. A. J. Rose. Gelatin-based materials in ocular tissue engineering. Materials (Basel) 7:3106–3135, 2014.

    CAS  Google Scholar 

  49. Rothrauff, B. B., L. Coluccino, R. Gottardi, L. Ceseracciu, S. Scaglione, L. Goldoni, and R. S. Tuan. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 12:159–170, 2018.

    Google Scholar 

  50. Ruberti, J., and J. Zieske. Prelude to corneal tissue engineering—Gaining control of collagen organization. Prog. Retin. Eye Res. 27:549–577, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Shankar, H., D. Taranath, C. Santhirathelagan, and K. Pesudovs. Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J. Cataract. Refr. Surg. 34:103–113, 2008.

    Google Scholar 

  52. ShirzaeiSani, E., A. Kheirkhah, D. Rana, Z. Sun, W. Foulsham, A. Sheikhi, A. Khademhosseini, R. Dana, and N. Annabi. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci. Adv. 2019. https://doi.org/10.1126/sciadv.aav1281.

    Article  Google Scholar 

  53. Sidney, L., L. E. Sidney, O. D. Mcintosh, and A. Hopkinson. Phenotypic change and induction of cytokeratin expression during in vitro culture of corneal stromal cells. IOVS 56:7225–7235, 2015.

    CAS  Google Scholar 

  54. Singh, M. R., S. Patel, and D. Singh. Chapter 9—natural polymer-based hydrogels as scaffolds for tissue engineering. In: Nanobiomaterials in Soft Tissue Engineering, edited by A. M. B. T. Grumezescu. Burlington: William Andrew Publishing, 2016, pp. 231–260.

    Google Scholar 

  55. Tan, Z., C. Parisi, L. Di Silvio, D. Dini, and A. E. Forte. Cryogenic 3D printing of super soft hydrogels. Sci. Rep. 7:1–11, 2017.

    Google Scholar 

  56. Taniguchi, D., K. Matsumoto, T. Tsuchiya, R. Machino, Y. Takeoka, A. Elgalad, K. Gunge, K. Takagi, T. Taura, G. Hatachi, N. Matsuo, N. Yamasaki, K. Nakayama, and T. Nagayasu. Scaffold-free trachea regeneration by tissue engineering with bio-3D printing. Interact. Carsiovasc. Thorac. Surg. 26:745–752, 2018.

    Google Scholar 

  57. Tarassoli, S. P., Z. M. Jessop, A. Al-Sabah, N. Gao, S. Whitaker, S. Doak, and I. S. Whitaker. Skin tissue engineering using 3D bioprinting: an evolving research field. J. Plast. Reconstr. Aesthet. Surg. 71:615–623, 2018.

    PubMed  Google Scholar 

  58. Vermeulen, N., G. Haddow, T. Seymour, A. Faulkner-Jones, and W. Shu. 3D bioprint me: a socioethical view of bioprinting human organs and tissues. J. Med. Ethics 43:618–624, 2017.

    PubMed  PubMed Central  Google Scholar 

  59. Wang, Z., R. Abdulla, B. Parker, R. Samanipour, S. Ghosh, and K. Kim. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 2015. https://doi.org/10.1088/1758-5090/7/4/045009.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang, D. Z., X. Jin, R. Dai, J. Holzman, and K. Kim. An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Adv. 6:21099–21104, 2016.

    CAS  Google Scholar 

  61. Wang, Z., H. Kumar, Z. Tian, X. Jin, J. F. Holzman, F. Menard, and K. Kim. Visible light photoinitiation of cell-adhesive gelatin methacryloyl hydrogels for stereolithography 3D bioprinting. ACS Appl. Mater. Interfaces 10:26859–26869, 2018.

    CAS  PubMed  Google Scholar 

  62. Wang, Z., Z. Tian, F. Menard, and K. Kim. Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication 9:44–101, 2017.

    Google Scholar 

  63. Wen, T., S. Xun, M. Haoye, S. Baichuan, C. Peng, L. Xuejian, Z. Kaihong, Y. Xuan, P. Jiang, and L. Shibi. 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater. Sci. 5:1690–1698, 2017.

    CAS  PubMed  Google Scholar 

  64. Wilson, S. L., I. Wimpenny, M. Ahearne, S. Rauz, A. J. El Haj, and Y. Yang. Chemical and topographical effects on cell differentiation and matrix elasticity in a corneal stromal layer model. Adv. Funct. Mater. 22:3641–3649, 2012.

    CAS  Google Scholar 

  65. Wu, Z., X. Su, Y. Xu, B. Kong, W. Sun, and S. Mi. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci. Rep. 6:1–10, 2016.

    Google Scholar 

  66. Zhang, L., M. C. Anderson, and C.-Y. Liu. The role of corneal stroma: a potential nutritional source for the cornea. J. Nat. Sci. 3:e428, 2017.

    PubMed  PubMed Central  Google Scholar 

  67. Zhang, B., L. Gao, L. Ma, Y. Luo, H. Yang, and Z. Cui. 3D bioprinting: a novel avenue for manufacturing tissues and organs. Engineering 5:777–794, 2019.

    CAS  Google Scholar 

  68. Zhang, Y., Y.-C. Wang, O. Yuka, L. Zhangh, and C.-Y. Liu. Mouse corneal stroma fibroblast primary cell culture. Bio-Protoc. 2016. https://doi.org/10.21769/BioProtoc.1960.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang, Y. S., K. Yue, J. Aleman, K. Mollazadeh-Moghaddam, S. M. Bakht, J. Yang, W. Jia, V. Dell’Erba, P. Assawes, S. R. Shin, M. R. Dokmeci, R. Oklu, and A. Khademhosseini. 3D bioprinting for tissue and organ fabrication. Ann. Biomed. Eng. 45:148–163, 2017.

    PubMed  Google Scholar 

  70. Zhao, X., Q. Lang, L. Yildirimer, Z. Y. Lin, W. Cui, N. Annabi, K. W. Ng, M. R. Dokmeci, A. M. Ghaemmaghami, and A. Khademhosseini. Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Heal. Mater. 5:108–118, 2016.

    CAS  Google Scholar 

  71. Zhao, X., W. Song, S. Liu, and L. Ren. Corneal regeneration by utilizing collagen based materials. Sci. China Chem. 59:1548–1553, 2016.

    CAS  Google Scholar 

  72. Zhu, J., and R. E. Marchant. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev. Med. Devices 8:607–626, 2011.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Sharif University of Technology under Grant Number of G960111, Ophthalmic Research Center of Shahid Beheshti University of Medical Sciences (IR.SBMU) under Grant Number 15848 and Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2014-04010). The authors also thank Dr. Elaheh Jooybar of the Sharif University of Technology, Kabilan Sakthivel and Mohamed Gamal of the University of British Columbia for their valuable suggestions and discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad J. Abdekhodaie or Keekyoung Kim.

Additional information

Associate Editor Debra T. Auguste oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1321 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdavi, S.S., Abdekhodaie, M.J., Kumar, H. et al. Stereolithography 3D Bioprinting Method for Fabrication of Human Corneal Stroma Equivalent. Ann Biomed Eng 48, 1955–1970 (2020). https://doi.org/10.1007/s10439-020-02537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02537-6

Keywords

Navigation