Skip to main content
Log in

Ultra-High-Frame-Rate Ultrasound Monitoring of Muscle Contractility Changes Due to Neuromuscular Electrical Stimulation

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The quick onset of muscle fatigue is a critical issue when applying neuromuscular electrical stimulation (NMES) to generate muscle contractions for functional limb movements, which were lost/impaired due to a neurological disorder or an injury. For in situ assessment of the effect of NMES-induced muscle fatigue, a novel noninvasive sensor modality that can quantify the degraded contractility of a targeted muscle is required. In this study, instantaneous strain maps of a contracting muscle were derived from ultra-high-frame-rate (2 kHz) ultrasound images to quantify the contractility. A correlation between strain maps and isometric contraction force values was investigated. When the muscle reached its maximum contraction, the maximum and the mean values of the strain map were correlated with the force values and were further used to stage the contractility change. During the muscle activation period, a novel methodology based on the principal component regression (PCR) was proposed to explore the strain–force correlation. The quadriceps muscle of 3 able-bodied human participants was investigated during NMES-elicited isometric knee extension experiments. Strong to very strong correlation results were obtained and indicate that the proposed measurements from ultrasound images are promising to quantify the muscle contractility changes during NMES.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Alibeji, N. A., N. A. Kirsch, and N. Sharma. An adaptive low-dimensional control to compensate for actuator redundancy and FES-induced muscle fatigue in a hybrid neuroprosthesis. Control Eng. Pr. 59:204–219, 2017.

    Article  Google Scholar 

  2. Alibeji, N. A., V. Molazadeh, F. Moore-Clingenpeel, and N. Sharma. A muscle synergy-inspired control design to coordinate functional electrical stimulation and a powered exoskeleton: artificial generation of synergies to reduce input dimensionality. IEEE Control Syst. Mag. 38:35–60, 2018.

    Article  Google Scholar 

  3. Allen, D. G., G. D. Lamb, and H. Westerblad. Skeletal muscle fatigue: cellular mechanisms. Physiol. Rev. 88:287–332, 2008.

    Article  CAS  Google Scholar 

  4. Andonian, P., M. Viallon, C. Le Goff, C. de Bourguignon, C. Tourel, J. Morel, G. Giardini, L. Gergelé, G. P. Millet, and P. Croisille. Shear-wave elastography assessments of quadriceps stiffness changes prior to, during and after prolonged exercise: a longitudinal study during an extreme mountain ultra-marathon. PLoS ONE 11:e0161855, 2016.

    Article  Google Scholar 

  5. Ateş, F., F. Hug, K. Bouillard, M. Jubeau, T. Frappart, M. Couade, J. Bercoff, and A. Nordez. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity. J. Electromyogr. Kinesiol. 25:703–708, 2015.

    Article  Google Scholar 

  6. Bickel, C. S., C. M. Gregory, and J. C. Dean. Motor unit recruitment during neuromuscular electrical stimulation: a critical appraisal. Eur. J. Appl. Physiol. 111:2399–2407, 2011.

    Article  Google Scholar 

  7. Bouillard, K., M. Jubeau, A. Nordez, and F. Hug. Effect of vastus lateralis fatigue on load sharing between quadriceps femoris muscles during isometric knee extensions. J Neurophysiol 111:768–776, 2014.

    Article  Google Scholar 

  8. Bouillard, K., A. Nordez, and F. Hug. Estimation of Individual Muscle Force Using Elastography. PLoS ONE 6:e29261, 2011.

    Article  CAS  Google Scholar 

  9. Chesler, N. C., and W. K. Durfee. Surface EMG as a fatigue indicator during FES-induced isometric muscle contractions. J. Electromyogr. Kinesiol. 7:27–38, 1997.

    Article  CAS  Google Scholar 

  10. Cifrek, M., V. Medved, S. Tonković, and S. Ostojić. Surface EMG based muscle fatigue evaluation in biomechanics. Clin. Biomech. 24:327–340, 2009.

    Article  Google Scholar 

  11. Dawson, M. J., D. G. Gadian, and D. R. Wilkie. Muscular fatigue investigated by phosphorus nuclear magnetic resonance. Nature 274:861, 1978.

    Article  CAS  Google Scholar 

  12. Doll, B. D., N. A. Kirsch, X. Bao, B. E. Dicianno, and N. Sharma. Dynamic optimization of stimulation frequency to reduce isometric muscle fatigue using a modified Hill–Huxley model. Muscle Nerve 57:634–641, 2018.

    Article  CAS  Google Scholar 

  13. Downey, R. J., T. H. Cheng, M. J. Bellman, and W. E. Dixon. Switched tracking control of the lower limb during asynchronous neuromuscular electrical stimulation: theory and experiments. IEEE Trans. Cybern. 47:1251–1262, 2016.

    Article  Google Scholar 

  14. Farris, R. J., H. A. Quintero, and M. Goldfarb. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 19:652–659, 2011.

    Article  Google Scholar 

  15. Georgakis, A., L. K. Stergioulas, and G. Giakas. Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency. IEEE Trans. Biomed. Eng. 50:262–265, 2003.

    Article  CAS  Google Scholar 

  16. Gobbo, M., N. A. Maffiuletti, C. Orizio, and M. A. Minetto. Muscle motor point identification is essential for optimizing neuromuscular electrical stimulation use. J. Neuroeng. Rehabil. 11:17, 2014.

    Article  Google Scholar 

  17. Ha, K. H., S. A. Murray, and M. Goldfarb. An approach for the cooperative control of FES with a powered exoskeleton during level walking for persons with paraplegia. IEEE Trans. Neural Syst. Rehabil. Eng. 24:455–466, 2016.

    Article  Google Scholar 

  18. Ibitoye, M. O., N. A. Hamzaid, J. M. Zuniga, and A. K. A. Wahab. Mechanomyography and muscle function assessment: a review of current state and prospects. Clin. Biomech. 29:691–704, 2014.

    Article  Google Scholar 

  19. Karu, Z. Z., W. K. Durfee, and A. M. Barzilai. Reducing muscle fatigue in FES applications by stimulating with N-let pulse trains. IEEE Trans. Biomed. Eng. 42:809–817, 1995.

    Article  CAS  Google Scholar 

  20. Kirsch, N. A., X. Bao, N. A. Alibeji, B. E. Dicianno, and N. Sharma. Model-based dynamic control allocation in a hybrid neuroprosthesis. IEEE Trans. Neural Syst. Rehabil. Eng. 26:224–232, 2018.

    Article  Google Scholar 

  21. Knowlton, G. C., R. L. Bennett, and R. McClure. Electromyography of fatigue. Arch. Phys. Med. Rehabil. 32:648–652, 1951.

    CAS  PubMed  Google Scholar 

  22. Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2:164–168, 1944.

    Article  Google Scholar 

  23. Lubinski, M. A., S. Y. Emelianov, and M. O’Donnell. Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46:82–96, 1999.

    Article  CAS  Google Scholar 

  24. Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431–441, 1963.

    Article  Google Scholar 

  25. Mizrahi, J. Fatigue in muscles activated by functional electrical stimulation. Crit. Rev. Phys. Rehabil. Med. 9:93–129, 1997.

    Article  Google Scholar 

  26. Moré, J. J. The Levenberg–Marquardt algorithm: Implementation and theory. In: Numerical Analysis, edited by G. A. Watson. Lecture Notes in Mathematics, Berlin: Springer, 1978. https://doi.org/10.1007/BFb0067700.

    Chapter  Google Scholar 

  27. Riener, R., J. Quintern, and G. Schmidt. Biomechanical model of the human knee evaluated by neuromuscular stimulation. J. Biomech. 29:1157–1167, 1996.

    Article  CAS  Google Scholar 

  28. Rogers, D. R., and D. T. MacIsaac. EMG-based muscle fatigue assessment during dynamic contractions using principal component analysis. J. Electromyogr. Kinesiol. 21:811–818, 2011.

    Article  Google Scholar 

  29. Sadoyama, T., and H. Miyano. Frequency analysis of surface EMG to evaluation of muscle fatigue. Eur. J. Appl. Physiol. Occup. Physiol. 47:239–246, 1981.

    Article  CAS  Google Scholar 

  30. Sayenko, D. G., R. Nguyen, M. R. Popovic, and K. Masani. Reducing muscle fatigue during transcutaneous neuromuscular electrical stimulation by spatially and sequentially distributing electrical stimulation sources. Eur. J. Appl. Physiol. 114:793–804, 2014.

    Article  Google Scholar 

  31. Sheffler, L. R., and J. Chae. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35:562–590, 2007.

    Article  Google Scholar 

  32. Sheng, Z., N. Sharma, and K. Kim. Quantitative assessment of changes in muscle contractility due to fatigue during NMES: an ultrasound imaging approach. IEEE Trans. Biomed. Eng. 2019. https://doi.org/10.1109/tbme.2019.2921754.

    Article  PubMed  Google Scholar 

  33. Shi, J., Y. P. Zheng, X. Chen, and Q. H. Huang. Assessment of muscle fatigue using sonomyography: muscle thickness change detected from ultrasound images. Med. Eng. Phys. 29:472–479, 2007.

    Article  CAS  Google Scholar 

  34. Shinohara, M., and K. Søgaard. Mechanomyography for studying force fluctuations and muscle fatigue. Exerc. Sport Sci. Rev. 34:59–64, 2006.

    Article  Google Scholar 

  35. Siracusa, J., K. Charlot, A. Malgoyre, S. Conort, P.-E. Tardo-Dino, C. Bourrilhon, and S. Garcia-Vicencio. Resting muscle shear modulus measured with ultrasound shear-wave elastography as an alternative tool to assess muscle fatigue in humans. Front. Physiol. 10:626, 2019.

    Article  Google Scholar 

  36. Taelman, J., J. Vanderhaegen, M. Robijns, G. Naulaers, A. Spaepen, and S. Van Huffel. Estimation of muscle fatigue using surface electromyography and near-infrared spectroscopy. In: Oxygen Transport to Tissue XXXII. New York: Springer, 2011, pp. 353–359.

  37. To, C. S., R. Kobetic, J. R. Schnellenberger, M. L. Audu, and R. J. Triolo. Design of a variable constraint hip mechanism for a hybrid neuroprosthesis to restore gait after spinal cord injury. IEEE/ASME Trans. Mechatronics 13:197–205, 2008.

    Article  Google Scholar 

  38. Vøllestad, N. K. Measurement of human muscle fatigue. J. Neurosci. Methods 74:219–227, 1997.

    Article  Google Scholar 

  39. Winter, D. A. Biomechanics and Motor Control of Human Movement. Hoboken: Wiley, 2009.

    Book  Google Scholar 

  40. Witte, R. S., K. Kim, B. J. Martin, and M. O’Donnell. Effect of fatigue on muscle elasticity in the human forearm using ultrasound strain imaging, 2006. https://ieeexplore.ieee.org/iel5/4028925/4030573/04398449.pdf.

  41. Yoshitake, Y., H. Ue, M. Miyazaki, and T. Moritani. Assessment of lower-back muscle fatigue using electromyography, mechanomyography, and near-infrared spectroscopy. Eur. J. Appl. Physiol. 84:174–179, 2001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by NSF award number: 1646009. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NSF. This research was supported in part by the University of Pittsburgh Center for Research Computing through the resources provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nitin Sharma or Kang Kim.

Additional information

Associate Editor Agata A. Exner oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 1076 kb)

Supplementary material 2 (MP4 932 kb)

Supplementary material 3 (MP4 933 kb)

Supplementary material 4 (MP4 686 kb)

Supplementary material 5 (MP4 790 kb)

Supplementary material 6 (MP4 557 kb)

Supplementary material 7 (MP4 633 kb)

Supplementary material 8 (MP4 650 kb)

Supplementary material 9 (MP4 662 kb)

Supplementary material 10 (MP4 615 kb)

Supplementary material 11 (PDF 289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Z., Sharma, N. & Kim, K. Ultra-High-Frame-Rate Ultrasound Monitoring of Muscle Contractility Changes Due to Neuromuscular Electrical Stimulation. Ann Biomed Eng 49, 262–275 (2021). https://doi.org/10.1007/s10439-020-02536-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02536-7

Keywords

Navigation