Skip to main content
Log in

Muscular Thin Films for Label-Free Mapping of Excitation Propagation in Cardiac Tissue

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript


Muscular thin films (MTFs), have already found a variety of applications in cardiac tissue engineering and in building of lab-on-a-chip systems. Here we present a novel approach to label-free mapping of excitation waves in the cardiomyocyte cell cultures with the use of MTFs. Neonatal rat ventricular cardiomyocytes were cultured on polydimethylsiloxane (PDMS) thin films and observed by means of off-axis illumination. Inflexions of the membrane created by the contraction of cardiomyocytes led to formation of patterns of bright and dark areas on the surface of the membrane. These patterns were recorded and analyzed for the monitoring of the contraction propagation. The method was compared with a standard optical mapping technique based on the use of a Ca2+-sensitive fluorescent dye. A good consistency of the results obtained by these two methods was demonstrated. The proposed method is non-toxic and might be of particular interest for the purpose of continuous monitoring in test systems based on human induced pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others



Human induced pluripotent stem cells


Induced pluripotent stem cells


Multi-electrode arrays


Microelectromechanical systems


Muscular thin films




Scanning electron microscopy


Atomic-force microscopy


  1. Agarwal, A., J. A. Goss, A. Cho, M. L. McCain, and K. K. Parker. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab. Chip 13:3599–3608, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ahola, A., A. L. Kiviaho, K. Larsson, M. Honkanen, K. Aalto-Setälä, and J. Hyttinen. Video image-based analysis of single human induced pluripotent stem cell derived cardiomyocyte beating dynamics using digital image correlation. Biomed. Eng. Online 13:39, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ahola, A., R. P. Pölönen, K. Aalto-Setälä, and J. Hyttinen. Simultaneous measurement of contraction and calcium transients in stem cell derived cardiomyocytes. Ann. Biomed. Eng. 46:148–158, 2018.

    Article  CAS  PubMed  Google Scholar 

  4. Alford, P. W., A. W. Feinberg, S. P. Sheehy, and K. K. Parker. Biohybrid thin films for measuring contractility in engineered cardiovascular muscle. Biomaterials 31:3613–3621, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benam, K. H., S. Dauth, B. Hassell, A. Herland, A. Jain, K.-J. Jang, K. Karalis, H. J. Kim, L. MacQueen, R. Mahmoodian, S. Musah, Y. S. Torisawa, A. D. van der Meer, R. Villenave, M. Yadid, K. K. Parker, and D. E. Ingber. Engineered in vitro disease models. Annu. Rev. Pathol. Mech. Dis. 10:195–262, 2015.

    Article  CAS  Google Scholar 

  6. Bingen, B. O., M. C. Engels, M. J. Schalij, W. Jangsangthong, Z. Neshati, I. Feola, D. L. Ypey, S. F. Askar, A. V. Panfilov, D. A. Pijnappels, and A. A. de Vries. Light-induced termination of spiral wave arrhythmias by optogenetic engineering of atrial cardiomyocytes. Cardiovasc. Res. 104:194–205, 2014.

    Article  CAS  PubMed  Google Scholar 

  7. Boudreau-Beland, J., J. E. Duverger, E. Petitjean, A. Maguy, J. Ledoux, and P. Comtois. Spatiotemporal stability of neonatal rat cardiomyocyte monolayers spontaneous activity is dependent on the culture substrate. PLoS ONE 10(6):e0127977, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Braunwald, E. Heart Disease, a Textbook of Cardiovascular Medicine. Philadelphia, PA: WB Saunders Company, 2001.

    Google Scholar 

  9. Burton, R. A. B., A. Klimas, C. M. Ambrosi, J. Tomek, A. Corbett, E. Entcheva, and G. Bub. Optical control of excitation waves in cardiac tissue. Nat. Photonics 9:813–816, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Capulli, A. K., K. Tian, N. Mehandru, A. Bukhta, S. F. Choudhury, M. Suchyta, and K. K. Parker. Approaching the in vitro clinical trial: engineering organs on chips. Lab Chip 14:3181–3186, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chae, S. K., J. H. Ryoo, and S. H. Lee. Thin and large free-standing PDMS membrane by using polystyrene Petri dish. Biochip J. 6:184–190, 2012.

    Article  CAS  Google Scholar 

  12. Cherry, E. M., and F. H. Fenton. Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J. Phys. 10:125016, 2008.

    Article  CAS  Google Scholar 

  13. Christoph, J., and S. Luther. Marker-free tracking for motion artifact compensation and deformation measurements in optical mapping videos of contracting hearts. Front. Physiol. 9:1483, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Christoph, J., J. Schröder-Schetelig, and S. Luther. Electromechanical optical mapping. Prog. Biophys. Mol. Biol. 130:150–169, 2017.

    Article  CAS  PubMed  Google Scholar 

  15. Davidenko, J. M., A. V. Pertsov, R. Salomonsz, W. Baxter, and J. Jalife. Stationary and drifting spiral waves of excitation in isolated cardiac muscle. Nature 355:349–351, 1992.

    Article  CAS  PubMed  Google Scholar 

  16. del Álamo, J. C., D. Lemons, R. Serrano, A. Savchenko, F. Cerignoli, R. Bodmer, and M. Mercola. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochem. Biophys. Acta 1717–1727:2016, 1863.

    Google Scholar 

  17. Denning, C., V. Borgdorff, J. Crutchley, K. S. A. Firth, V. George, S. Kalra, A. Kondrashov, M. D. Hoang, D. Mosqueira, A. Patel, and L. Prodanov. Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform. Biochim. Biophys. Acta 1728–1748:2016, 1863.

    Google Scholar 

  18. Dimitriadis, E. K., F. Horkay, J. Maresca, B. Kachar, and R. S. Chadwick. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82(5):2798–2810, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feinberg, A. W., A. Feigel, S. S. Shevkoplyas, S. Sheehy, G. M. Whitesides, and K. K. Parker. Muscular thin films for building actuators and powering devices. Science 317:1366–1370, 2007.

    Article  CAS  PubMed  Google Scholar 

  20. Goßmann, M., R. Frotscher, P. Linder, S. Neumann, R. Bayer, M. Epple, M. Staat, A. Artmann, and G. M. Artmann. Mechano-pharmacological characterization of cardiomyocytes derived from human induced pluripotent stem cells. Cell. Physiol. Biochem. 38:1182–1198, 2016.

    Article  PubMed  CAS  Google Scholar 

  21. Grosberg, A., P. W. Alford, M. L. McCain, and K. K. Parker. Ensembles of engineered cardiac tissues for physiological and pharmacological study. Heart on a chip. Lab. Chip. 11:4165–4173, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hardy, M. E. L., C. L. Lawrence, N. B. Standen, and G. C. Rodrigo. Can optical recordings of membrane potential be used to screen for drug-induced action potential prolongation in single cardiac myocytes? J. Pharmacol. Toxicol. Methods 54:173–182, 2006.

    Article  CAS  PubMed  Google Scholar 

  23. Hayakawa, T., T. Kunihiro, S. Dowaki, H. Uno, E. Matsui, M. Uchida, S. Kobayashi, A. Yasuda, T. Shimizu, and T. Okano. Noninvasive evaluation of contractile behavior of cardiomyocyte nonolayers based on motion vector analysis. Tissue Eng. Part C 18:21–32, 2012.

    Article  CAS  Google Scholar 

  24. Hecht, E. Optics. Harlow: Pearson Education, p. 109, 2015.

    Google Scholar 

  25. Herron, T. J., P. Lee, and J. Jalife. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ. Res. 110:609–623, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herron, T. J., A. M. D. Rocha, K. F. Campbell, D. Ponce-Balbuena, B. C. Willis, G. Guerrero-Serna, Q. Liu, M. Klos, H. Musa, M. Zarzoso, and A. Bizy. Extracellular matrix–mediated maturation of human pluripotent stem cell–derived cardiac monolayer structure and electrophysiological function. Circulation 9(4):e003638, 2016.

    CAS  PubMed  Google Scholar 

  27. Hirt, M. N., A. Hansen, and T. Eschenhagen. Cardiac tissue engineering: state of the art. Circ. Res. 114:354–367, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Hossain, M. M., E. Shimizu, M. Saito, S. Ramachandra Rao, Y. Yamaguchi, and E. Tamiya. Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video. Analyst 135:1624–1630, 2010.

    Article  CAS  PubMed  Google Scholar 

  29. Huebsch, N., P. Loskill, M. A. Mandegar, N. C. Marks, A. S. Sheehan, Z. Ma, A. Mathur, T. N. Nguyen, J. C. Yoo, L. M. Judge, and C. I. Spencer. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng. Part C 21:467–479, 2015.

    Article  CAS  Google Scholar 

  30. Hwang, S.-M., K.-H. Yea, and K. J. Lee. Regular & alternant. Spiral waves of contractile motion on rat ventricle cell cultures. Phys. Rev. Lett. 92:1–4, 2004.

    Article  CAS  Google Scholar 

  31. Jacot, J. G., A. D. McCulloch, and J. H. Omens. Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95(7):3479–3487, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jalife, J. Ventricular fibrillation: mechanisms of initiation and maintenance. Annu. Rev. Physiol. 62:25–50, 2000.

    Article  CAS  PubMed  Google Scholar 

  33. Kadota, S., I. Minami, N. Morone, J. E. Heuser, K. Agladze, and N. Nakatsuji. Development of a reentrant arrhythmia model in human pluripotent stem cell-derived cardiac cell sheets. Eur. Heart J. 34:1147–1156, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Kamgoué, A., J. Ohayon, Y. Usson, L. Riou, and P. Tracqui. Quantification of cardiomyocyte contraction based on image correlation analysis. Cytom. Part A 75:298–308, 2009.

    Article  Google Scholar 

  35. Kijlstra, J. D., D. Hu, N. Mittal, E. Kausel, P. Van Der Meer, A. Garakani, and I. J. Domian. Integrated analysis of contractile kinetics, force generation, and electrical activity in single human stem cell-derived cardiomyocytes. Stem Cell Rep. 5:1226–1238, 2015.

    Article  Google Scholar 

  36. Kim, S. B., H. Bae, J. M. Cha, S. J. Moon, M. R. Dokmeci, D. M. Cropek, and A. Khademhosseini. A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab. Chip. 11:1801–1807, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kléber, A. G., and Y. Rudy. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84:431–488, 2004.

    Article  PubMed  Google Scholar 

  38. Kudryashova, N. N., A. S. Teplenin, Y. V. Orlova, L. V. Selina, and K. Agladze. Arrhythmogenic role of the border between two areas of cardiac cell alignment. J. Mol. Cell. Cardiol. 76:227–234, 2014.

    Article  CAS  PubMed  Google Scholar 

  39. Laurila, E., A. Ahola, J. Hyttinen, and K. Aalto-Setälä. Methods for in vitro functional analysis of iPSC derived cardiomyocytes—special focus on analyzing the mechanical beating behavior. Biochem. Biophys. Acta 1864–1872:2016, 1863.

    Google Scholar 

  40. Linder, P., J. Trzewik, M. Rüffer, G. M. Artmann, I. Digel, R. Kurz, A. Rothermel, A. Robitzki, and A. Temiz Artmann. Contractile tension and beating rates of self-exciting monolayers and 3D-tissue constructs of neonatal rat cardiomyocytes. Med. Biol. Eng. Comput. 48:59–65, 2010.

    Article  CAS  PubMed  Google Scholar 

  41. McDonald, J. C., and G. M. Whitesides. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:491–499, 2002.

    Article  CAS  PubMed  Google Scholar 

  42. Moon, I., E. Ahmadzadeh, K. Jaferzadeh, and N. Kim. Automated quantification study of human cardiomyocyte synchronization using holographic imaging. Biomed. Opt. Express 10:610–621, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nawroth, J. C., H. Lee, A. W. Feinberg, C. M. Ripplinger, M. L. McCain, A. Grosberg, J. O. Dabiri, and K. K. Parker. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 30:792–797, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nyapshaev, I. A., A. V. Ankudinov, A. V. Stovpyaga, E. Y. Trofimova, and M. Y. Eropkin. Diagnostics of living cells under an atomic force microscope using a submicron spherical probe with a calibrated radius of curvature. Tech. Phys. 57(10):1430–1437, 2012.

    Article  CAS  Google Scholar 

  45. Orlova, Y., N. Magome, L. Liu, Y. Chen, and K. Agladze. Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 32:5615–5624, 2011.

    Article  CAS  PubMed  Google Scholar 

  46. Park, S. J., M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. H. Campbell, S. Dauth, A. K. Capulli, and F. S. Pasqualini. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 353:158–162, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pauwelyn, T., V. Reumers, G. Vanmeerbeeck, R. Stahl, S. Janssens, L. Lagae, D. Braeken, and A. Lambrechts. Label-free cardiac contractility monitoring for drug screening applications based on compact high-speed lens-free imaging. Proc. SPIE 9328:932818, 2015.

    Article  Google Scholar 

  48. Pauwelyn, T., R. Stahl, L. Mayo, X. Zheng, A. Lambrechts, S. Janssens, L. Lagae, V. Reumers, and D. Braeken. Reflective lens-free imaging on high-density silicon microelectrode arrays for monitoring and evaluation of in vitro cardiac contractility. Biomed. Opt. Express 9:1827–1841, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Podgurskaya, A. D., V. A. Tsvelaya, S. R. Frolova, I. Y. Kalita, N. N. Kudryashova, and K. I. Agladze. Effect of heptanol and ethanol on excitation wave propagation in a neonatal rat ventricular myocyte monolayer. Toxicol. Vitrol. 51:136–144, 2018.

    Article  CAS  Google Scholar 

  50. Podgurskaya, A. D., V. A. Tsvelaya, M. M. Slotvitsky, E. V. Dementyeva, K. R. Valetdinova, and K. I. Agladze. The Use of iPSC-derived cardiomyocytes and optical mapping for erythromycin arrhythmogenicity testing. Cardiovasc. Toxicol. 19:518–528, 2019.

    Article  CAS  PubMed  Google Scholar 

  51. Sackmann, E. K., A. L. Fulton, and D. J. Beebe. The present and future role of microfluidics in biomedical research. Nature 507:181–189, 2014.

    Article  CAS  PubMed  Google Scholar 

  52. Schaffer, P., H. Ahammer, W. Müller, B. Koidl, and H. Windisch. Di-4-ANEPPS causes photodynamic damage to isolated cardiomyocytes. Pflügers Arch. Eur. J. Physiol. 426:548–551, 1994.

    Article  CAS  Google Scholar 

  53. Shaked, N. T., L. L. Satterwhite, N. Bursac, and A. Wax. Whole-cell-analysis of live cardiomyocytes using wide-field interferometric phase microscopy. Biomed. Opt. Express 1:1165–1167, 2010.

    Article  Google Scholar 

  54. Shutko, A. V., V. S. Gorbunov, K. G. Guria, and K. I. Agladze. Biocontractile microfluidic channels for peristaltic pumping. Biomed. Microdev. 19:72, 2017.

    Article  Google Scholar 

  55. Teplenin, A., A. Krasheninnikova, N. Agladze, K. Sidoruk, O. Agapova, I. Agapov, V. Bogush, and K. Agladze. Functional analysis of the engineered cardiac tissue grown on recombinant spidroin fiber meshes. PLoS ONE 10:e0121155, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang, Y., P. Kanjanaboos, S. P. McBride, E. Barry, X. M. Lin, and H. M. Jaeger. Mechanical properties of self-assembled nanoparticle membranes: stretching and bending. Faraday Discuss. 181:325–338, 2015.

    Article  CAS  PubMed  Google Scholar 

  57. Wang, L., L. Liu, X. Li, N. Magome, K. Agladze, and Y. Chen. Multi-electrode monitoring of guided excitation in patterned cardiomyocytes. Microelectron. Eng. 111:267–271, 2013.

    Article  CAS  Google Scholar 

  58. Whitesides, G. M. The origins and the future of microfluidics. Nature 442:368–373, 2006.

    Article  CAS  PubMed  Google Scholar 

  59. Winfree, A. T. When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. New Jersey: Princeton University Press, 1987.

    Google Scholar 

  60. Wolfe, D. B., D. Qin, and G. M. Whitesides. Rapid prototyping of microstructures by soft lithography for biotechnology. Methods Mol. Biol. 583:81–107, 2010.

    Article  CAS  PubMed  Google Scholar 

Download references


This research work was partially supported by the Russian Foundation for Basic Research grant 16-34-60225 and by the Ministry of Education and Science of the Russian Federation Grant (state task) 6.9906.2017/BCh. Authors are grateful to the Center for collective use of unique scientific equipment in the field of nanotechnology of Moscow Institute of Physics and Technology and personally to Dr. Negrov D.V. for the preparation of micro-patterned molds used in this research.

Author Contributions

VAB, VSG, KGG and KIA designed the experiments. VAB &VSG performed the experiments under the direction of KGG; VAB, VSG, KGG and KIA analyzed the data and contributed to discussion. VAB, VSG, KGG and KIA wrote and edited the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Konstantin G. Guria.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1 Video 1: Label-free monitoring of excitation wave propagation in a cell culture seeded on a thin film: A – raw data; B – contrast enhanced video. (AVI 15295 kb)

S2 Video 2: Label-free monitoring of spiral wave in an isotropic cardiac culture interacting with a circular wave: A – raw data; B – contrast enhanced video. (AVI 6502 kb)

S3 Video 3: Successive mapping of the same sample by two different methods: A – Ca2+-sensitive fluorescent mapping; B – label-free mapping. (AVI 21,065 kb)

S4 Video 4: Label-free monitoring of excitation waves performed on GoPro camera: A – raw data; B – contrast enhanced video. (AVI 6776 kb)

S5 Video 5: A spiral wave in anisotropic cardiac culture observed with the label-free method: A – raw data; B – contrast enhanced video. (AVI 10,710 kb)


Supplementary Figure 1. Activation maps of spiral waves imaged by label-free optical mapping. (a) Activation map of the spiral wave in isotropic cardiomyocyte culture interacting with the plane wave. (b) - Activation map of the anisotropic contraction spiral wave in the patterned cardiac monolayer. Scale bars – 3 mm. (TIFF 1207 kb)


Supplementary Figure 2. Conduction velocities for the samples cultured on membranes with different thicknesses. (TIFF 93 kb)


Supplementary Figure 3. Isochrones of excitation wave propagation in cardiac culture imaged by label-free method. (a) – Wave propagation without lidocaine. (b) – Wave propagation after treatment with 2 mM lidocaine. Time interval between isochrones is equal to 30 ms. Scale bar – 2 mm. (TIFF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balashov, V.A., Gorbunov, V.S., Guria, K.G. et al. Muscular Thin Films for Label-Free Mapping of Excitation Propagation in Cardiac Tissue. Ann Biomed Eng 48, 2425–2437 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: