Skip to main content

Generating Cell Type-Specific Protein Signatures from Non-symptomatic and Diseased Tissues


Here we demonstrate a technique to generate proteomic signatures of specific cell types within heterogeneous populations. While our method is broadly applicable across biological systems, we have limited the current work to study neural cell types isolated from human, post-mortem Alzheimer’s disease (AD) and aged-matched non-symptomatic (NS) brains. Motivating the need for this tool, we conducted an initial meta-analysis of current, human AD proteomics studies. While the results broadly corroborated major neurodegenerative disease hypotheses, cell type-specific predictions were limited. By adapting our Formaldehyde-fixed Intracellular Target-Sorted Antigen Retrieval (FITSAR) method for proteomics and applying this technique to characterize AD and NS brains, we generated enriched neuron and astrocyte proteomic profiles for a sample set of donors (available at Results showed the feasibility for using FITSAR to evaluate cell-type specific hypotheses. Our overall methodological approach provides an accessible platform to determine protein presence in specific cell types and emphasizes the need for protein-compatible techniques to resolve systems complicated by cellular heterogeneity.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5





Alzheimer’s disease






Extracellular matrix


Endoplasmic reticulum




Fluorescence-activated cell sorting


Forward scatter


Formaldehyde-fixed Intracellular Target-Sorted Antigen Retrieval


Glial fibrillary acidic protein


Hallmark gene sets


KEGG gene sets






Oligodendrocyte marker 1


Phosphate saline buffer




Plasma membrane


Protease and phosphatase inhibitor


Reactome gene sets


Region #


Sodium dodecyl sulfate


Side scatter




β-III tubulin


Years old


  1. 1.

    Bard, F., et al. Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of alzheimer disease. Nat. Med. 6:916–919, 2000.

    CAS  PubMed  Google Scholar 

  2. 2.

    Bertram, L., and R. E. Tanzi. Genome-wide association studies in alzheimer’s disease. Hum. Mol. Genet. 18:R137–145, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Boisvert, M. M., G. A. Erikson, M. N. Shokhirev, and N. J. Allen. The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22:269–285, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Braak, H., I. Alafuzoff, T. Arzberger, H. Kretzschmar, and K. Del Tredici. Staging of alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 112:389–404, 2006.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Brunk, U. T., and A. Terman. Lipofuscin: Mechanisms of age-related accumulation and influence on cell function. Free Radic. Biol. Med. 33:611–619, 2002.

    CAS  PubMed  Google Scholar 

  6. 6.

    Budnik, B., E. Levy, G. Harmange, and N. Slavov. Scope-ms: Mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19:161, 2018.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Cahoy, J. D., et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28:264–278, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Chung, W. S., et al. Astrocytes mediate synapse elimination through megf10 and mertk pathways. Nature 504:394–400, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Clarke, L. E., et al. Normal aging induces a1-like astrocyte reactivity. Proc. Natl. Acad. Sci. USA 115:E1896–E1905, 2018.

    CAS  PubMed  Google Scholar 

  10. 10.

    Cuyvers, E., and K. Sleegers. Genetic variations underlying Alzheimer’s disease: evidence from genome-wide association studies and beyond. Lancet Neurol. 15:857–868, 2016.

    CAS  PubMed  Google Scholar 

  11. 11.

    Darmanis, S., et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl. Acad. Sci. USA 112:7285–7290, 2015.

    CAS  PubMed  Google Scholar 

  12. 12.

    de Sousa Abreu, R., L. O. Penalva, E. M. Marcotte, and C. Vogel. Global signatures of protein and mrna expression levels. Mol. Biosyst. 5:1512–1526, 2009.

    PubMed  Google Scholar 

  13. 13.

    De Strooper, B., and E. Karran. The cellular phase of alzheimer’s disease. Cell 164:603–615, 2016.

    PubMed  PubMed Central  Google Scholar 

  14. 14.

    Del-Aguila, J. L., et al. A single-nuclei rna sequencing study of mendelian and sporadic ad in the human brain. Alzheimers Res. Ther. 11:71, 2019.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Duong, D. The baltimore longitudinal study on aging (blsa) study.!Synapse:syn3606086, 2015.

  16. 16.

    Ginsberg, S. D., S. Che, S. E. Counts, and E. J. Mufson. Single cell gene expression profiling alzheimer’s disease. NeuroRx 3:302–318, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Giri, M., M. Zhang, and Y. Lu. Genes associated with alzheimer’s disease: An overview and current status. Clin. Interv. Aging. 11:665–681, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Goeman, J. J., S. A. van de Geer, and H. C. van Houwelingen. Testing against a high dimensional alternativ. J. R. Stat. Soc. B 68:477–493, 2006.

    Google Scholar 

  19. 19.

    Goltsev, Y., et al. Deep profiling of mouse splenic architecture with codex multiplexed imaging. Cell 174:968–981, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Grubman, A., et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci. 22:2087–2097, 2019.

    CAS  PubMed  Google Scholar 

  21. 21.

    Gry, M., et al. Correlations between rna and protein expression profiles in 23 human cell lines. BMC Genom. 10:365, 2009.

    Google Scholar 

  22. 22.

    Guttenplan, K. A., and S. A. Liddelow. Astrocytes and microglia: models and tools. J. Exp. Med. 216:71–83, 2018.

    PubMed  Google Scholar 

  23. 23.

    Hanzelmann, S., R. Castelo, and J. Guinney. Gsva: gene set variation analysis for microarray and rna-seq data. BMC Bioinform. 14:7, 2013.

    Google Scholar 

  24. 24.

    Hyman, B. T., et al. National institute on aging–alzheimer’s association guidelines for the neuropathologic assessment of alzheimer’s disease. Alzheimers Dement. 8:1–13, 2012.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Jansen, I. E., et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 51:404–413, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kita, R. Dataspectra2., 2018.

  27. 27.

    Korin, B., et al. High-dimensional, single-cell characterization of the brain’s immune compartment. Nat. Neurosci. 20:1300–1309, 2017.

    CAS  PubMed  Google Scholar 

  28. 28.

    Kress, B. T., et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76:845–861, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lambert, J. C., et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45:1452–1458, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Liddelow, S. A., and B. A. Barres. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967, 2017.

    CAS  Google Scholar 

  31. 31.

    Liddelow, S. A., et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Magdeldin, S., and T. Yamamoto. Toward deciphering proteomes of formalin-fixed paraffin-embedded (ffpe) tissues. Proteomics 12:1045–1058, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Mathys, H., et al. Single-cell transcriptomic analysis of alzheimer’s disease. Nature 570:332–337, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Mattsson, N., J. M. Schott, J. Hardy, M. R. Turner, and H. Zetterberg. Selective vulnerability in neurodegeneration: Insights from clinical variants of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 87:1000–1004, 2016.

    PubMed  Google Scholar 

  35. 35.

    Metsalu, T., and J. Vilo. Clustvis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 43:W566–570, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Peters, M. The banner sun health research institute (banner) study.!Synapse:syn7170616, 2016.

  37. 37.

    Rothhammer, V., et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557:724–728, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Sadick, J. S., M. E. Boutin, D. Hoffman-Kim, and E. M. Darling. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci. Rep. 6:33999, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sadick, J. S., and E. M. Darling. Processing fixed and stored adipose-derived stem cells for quantitative protein array assays. Biotechniques 63:275–280, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Seyfried, N. T., et al. A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst. 4:60–72, 2017.

    CAS  PubMed  Google Scholar 

  41. 41.

    Shen, L., and J. Jia. An overview of genome-wide association studies in Alzheimer’s disease. Neurosci. Bull. 32:183–190, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Shi, Y., et al. Apoe4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549:523–527, 2017.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Subramanian, A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 102:15545–15550, 2005.

    CAS  PubMed  Google Scholar 

  44. 44.

    The perelman school of medicine upenn proteomics pilot (upppilot) study.!Synapse:syn5477237, 2015.

  45. 45.

    Vogel, C., and E. M. Marcotte. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13:227–232, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Weller, R. O., M. Subash, S. D. Preston, I. Mazanti, and R. O. Carare. Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol. 18:253–266, 2008.

    CAS  PubMed  Google Scholar 

  47. 47.

    Yun, S. P., et al. Block of a1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat. Med. 24:931–938, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Zamanian, J. L., et al. Genomic analysis of reactive astrogliosis. J. Neurosci. 32:6391–6410, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Zhou, Y., et al. Human and mouse single-nucleus transcriptomics reveal trem2-dependent and trem2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26:131–142, 2020.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Zhu, Y., et al. Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nat. Commun. 9:882, 2018.

    PubMed  PubMed Central  Google Scholar 

Download references


The authors would like to thank Rebecca Hamelin and Brown’s Animal Care Facility for providing sentinel rats for method optimization, Dr. Edward Stopa, Terra D. Velilla, and the Brain Tissue Resource Center for providing primary human brain samples, Mark Dooner and the COBRE Flow Cytometry Core at Rhode Island Hospital for his assistance with FACS runs, Dr. TuKiet Lam, Jean Kanyo, Wei Wei Wang, and Keck Mass Spectrometry & Proteomics Resource Core at Yale University for the mass spectrometry sample preparation and data analysis, Dr. Thomas Neubert for his feedback on the proteomics analyses, Dr. Thomas Wisniewski, Dr. Arline Faustin, and the New York University Alzheimer’s Disease Center (funded in part by PHS Grant P30 AG08051) for providing primary human brain tissue sections, and Dr. Ryosuke Kita for his help on using data spectra.


This work was supported by the National Institutes of Health (R01 AR063642 to EMD, T32 to JSS via T32 AG052909 (Wisniewski, Scharfman)), the National Science Foundation (CAREER CBET 1253189 and EAGER CBET 1547819 to EMD, GRFP 2014183678 to JSS), the Cure Alzheimer’s Fund (SAL), and the Alzheimer’s Disease Resource Center at NYU Langone (SAL and JSS).

Author Contributions

JSS, LAC, HCC, CF, SAL, and EMD designed the study and wrote the manuscript. JSS conducted all experimental work, including cell isolation, FACS, WBs, and proteomics experiments. JSS and LAC conducted all bioinformatics analyses. JSS and HCC conducted all confocal imaging.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information



Corresponding author

Correspondence to Eric M. Darling.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Stefan M. Duma oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2455 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadick, J.S., Crawford, L.A., Cramer, H.C. et al. Generating Cell Type-Specific Protein Signatures from Non-symptomatic and Diseased Tissues. Ann Biomed Eng 48, 2218–2232 (2020).

Download citation


  • Astrocytes
  • Alzheimer’s disease
  • Brain
  • Cellular heterogeneity
  • Proteomics
  • Enrichment
  • Sorting