Skip to main content
Log in

Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Articular cartilage has limited healing and self-repair capability. Damage to articular cartilage becomes irreversible leading to osteoarthritis, which can impact a person’s quality of life. Approximately, 5–10% of cartilage tissue is made up of sulfated glycosaminoglycans (GAGs), which sequester growth factors as well as provide structural integrity to the native cartilage tissue. This study evaluated the chondrogenic differentiation of human mesenchymal stem cells (MSCs) on gelatin-based scaffolds containing partially sulfated cellulose (pSC), a GAG mimetic derived from cellulose, in comparison to native GAGs, chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), where pSC has similarity to CS-C in terms of degree and pattern of sulfation. Scaffolds were prepared by electrospinning gelatin with pSC or the native GAGs. All scaffolds consist of fibers having average diameters of approximately 3 μm and inter-fiber spacing of approximately 30 μm and were hydrolytically stable throughout the culture. MSCs cultured on pSC containing scaffolds showed early production of sulfated GAGs and higher collagen type II to type I ratio than native GAGs. Among the native GAGs, chondrogenesis was promoted to a greater extent for CS-C in comparison to CS-A containing scaffolds, which suggests the pattern of sulfation impacts chondrogenesis. Partially sulfated cellulose could be used as a potential GAG mimic for cartilage tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Anderson, R. A., K. Feathergill, X.-H. Diao, C. Chany, W. F. Rencher, L. J. D. Zaneveld, and D. P. Waller. Contraception by Ushercell™ (cellulose sulfate) in formulation: duration of effect and dose effectiveness. Contraception 70:415–422, 2004.

    CAS  PubMed  Google Scholar 

  2. Antonio, J. D. S., B. M. Winston, and R. S. Tuan. Regulation of chondrogenesis by heparan sulfate and structurally related glycosaminoglycans. Dev. Biol. 123:17–24, 1987.

    Google Scholar 

  3. Arai, Y., S. Park, B. Choi, K.-W. Ko, W. Choi, J.-M. Lee, D.-W. Han, H.-K. Park, I. Han, J. Lee, and S.-H. Lee. Enhancement of matrix metalloproteinase-2 (MMP-2) as a potential chondrogenic marker during chondrogenic differentiation of human adipose-derived stem cells. International Journal of Molecular Sciences 17:963, 2016.

    PubMed Central  Google Scholar 

  4. Bhosale, A. M., and J. B. Richardson. Articular cartilage: structure, injuries and review of management. British Medical Bulletin 87:77–95, 2008.

    PubMed  Google Scholar 

  5. Brown, G. C., K. S. Lim, B. L. Farrugia, G. J. Hooper, and T. B. Woodfield. Fabrication of gelatin-heparin hydrogels with enhanced chondrogenic differentiation and tunable degradation. Front. Bioeng. Biotechnol., 2016. https://doi.org/10.3389/conf.fbioe.2016.01.00613.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instructional Course Lectures 47:477–486, 1998.

    CAS  PubMed  Google Scholar 

  7. Chameettachal, S., S. Midha, and S. Ghosh. Regulation of chondrogenesis and hypertrophy in silk fibroin-gelatin-based 3D bioprinted constructs. ACS Biomater. Sci. Eng. 2:1450–1463, 2016.

    CAS  Google Scholar 

  8. Chang, K.-Y., L.-W. Cheng, G.-H. Ho, Y.-P. Huang, and Y.-D. Lee. Fabrication and characterization of poly(γ-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater. 5:1937–1947, 2009.

    CAS  PubMed  Google Scholar 

  9. Chen, J., Y. Wang, C. Chen, C. Lian, T. Zhou, B. Gao, Z. Wu, and C. Xu. Exogenous heparan sulfate enhances the TGF-β3-induced chondrogenesis in human mesenchymal stem cells by activating TGF-β/Smad signaling. Stem Cells Int. 2016:10, 2016.

    Google Scholar 

  10. Chen, F., S. Yu, B. Liu, Y. Ni, C. Yu, Y. Su, X. Zhu, X. Yu, Y. Zhou, and D. Yan. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci. Rep. 6:20014, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Detterline, A. J., S. Goldberg, B. R. J. Bach, and B. J. Cole. Treatment options for articular cartilage defects of the knee. Orthop. Nurs. 24:361–366, 2005.

    PubMed  Google Scholar 

  12. Enobakhare, B. O., D. L. Bader, and D. A. Lee. Quantification of sulfated glycosaminoglycans in chondrocyte/alginate cultures, by use of 1,9-dimethylmethylene blue. Anal. Biochem. 243:189–191, 1996.

    CAS  PubMed  Google Scholar 

  13. Gama, C. I., S. E. Tully, N. Sotogaku, P. M. Clark, M. Rawat, N. Vaidehi, W. A. Goddard, A. Nishi, and L. C. Hsieh-Wilson. Sulfation patterns of glycosaminoglycans encode molecular recognition and activity. Nature Chemical Biology 2:467, 2006.

    CAS  PubMed  Google Scholar 

  14. Groth, T., and W. Wagenknecht. Anticoagulant potential of regioselective derivatized cellulose. Biomaterials 22:2719–2729, 2001.

    CAS  PubMed  Google Scholar 

  15. Hempel, U., V. Hintze, S. Möller, M. Schnabelrauch, D. Scharnweber, and P. Dieter. Artificial extracellular matrices composed of collagen I and sulfated hyaluronan with adsorbed transforming growth factor β1 promote collagen synthesis of human mesenchymal stromal cells. Acta Biomater. 8:659–666, 2012.

    CAS  PubMed  Google Scholar 

  16. Huang, G. P., R. Menezes, R. Vincent, W. Hammond, L. Rizio, G. Collins, and T. L. Arinzeh. Gelatin scaffolds containing partially sulfated cellulose promote mesenchymal stem cell chondrogenesis. Tissue Eng. A 23:1011–1021, 2017.

    Google Scholar 

  17. Huang, G. P., A. Molina, N. Tran, G. Collins, and T. L. Arinzeh. Investigating cellulose derived glycosaminoglycan mimetic scaffolds for cartilage tissue engineering applications. J. Tissue Eng. Regen. Med. 12:e592–e603, 2018.

    CAS  PubMed  Google Scholar 

  18. Huang, G. P., S. Shanmugasundaram, P. Masih, D. Pandya, S. Amara, G. Collins, and T. L. Arinzeh. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J. Biomed. Mater. Res. A 103:762–771, 2015.

    PubMed  Google Scholar 

  19. Huang, Z.-M., Y. Z. Zhang, S. Ramakrishna, and C. T. Lim. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45:5361–5368, 2004.

    CAS  Google Scholar 

  20. Jaiswal, N., S. E. Haynesworth, A. I. Caplan, and S. P. Bruder. Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. J. Cell. Biochem. 64:295–312, 1997.

    CAS  PubMed  Google Scholar 

  21. Kawamura, D., T. Funakoshi, S. Mizumoto, K. Sugahara, and N. Iwasaki. Sulfation patterns of exogenous chondroitin sulfate affect chondrogenic differentiation of ATDC5 cells. J. Orthop. Sci. 19:1028–1035, 2014.

    CAS  PubMed  Google Scholar 

  22. Kim, M., I. E. Erickson, M. Choudhury, N. Pleshko, and R. L. Mauck. Transient exposure to TGF-β3 improves the functional chondrogenesis of msc-laden hyaluronic acid hydrogels. J. Mech. Behav. Biomed. Mater. 11:92–101, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Levett, P. A., F. P. W. Melchels, K. Schrobback, D. W. Hutmacher, J. Malda, and T. J. Klein. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Acta Biomater. 10:214–223, 2014.

    CAS  PubMed  Google Scholar 

  24. McCarthy, B. Antivirals—an increasingly healthy investment. Nat. Biotechnol. 25:1390, 2007.

    CAS  PubMed  Google Scholar 

  25. Menezes, R., S. Hashemi, R. Vincent, G. Collins, J. Meyer, M. Foston, and T. L. Arinzeh. Investigation of glycosaminoglycan mimetic scaffolds for neurite growth. Acta Biomater. 90:169–178, 2019.

    CAS  PubMed  Google Scholar 

  26. Mucci, A., L. Schenetti, and N. Volpi. 1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydr. Polym. 41:37–45, 2000.

    CAS  Google Scholar 

  27. Mueller, M. B., M. Fischer, J. Zellner, A. Berner, T. Dienstknecht, L. Prantl, R. Kujat, M. Nerlich, R. S. Tuan, and P. Angele. Hypertrophy in mesenchymal stem cell chondrogenesis: effect of TGF-β isoforms and chondrogenic conditioning. Cells Tissues Organs 192:158–166, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mueller, M. B., and R. S. Tuan. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 58:1377–1388, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Nazempour, A., and B. J. Van Wie. Chondrocytes, mesenchymal stem cells, and their combination in articular cartilage regenerative medicine. Ann. Biomed. Eng. 44:1325–1354, 2016.

    CAS  PubMed  Google Scholar 

  30. Petersen, W., M. Tsokos, and T. Pufe. Expression of VEGF121 and VEGF165 in hypertrophic chondrocytes of the human growth plate and epiphyseal cartilage. J. Anat. 201:153–157, 2002.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfander, D., D. Kortje, R. Zimmermann, G. Weseloh, T. Kirsch, M. Gesslein, T. Cramer, and B. Swoboda. Vascular endothelial growth factor in articular cartilage of healthy and osteoarthritic human knee joints. Ann. Rheum. Dis. 60:1070–1073, 2001.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Portocarrero, G., G. Collins, and T. Livingston Arinzeh. Challenges in cartilage tissue engineering. J. Tissue Sci. Eng. 4:120, 2013.

    Google Scholar 

  33. Rastogi, A., H. Kim, J. D. Twomey, and A. H. Hsieh. MMP-2 mediates local degradation and remodeling of collagen by annulus fibrosus cells of the intervertebral disc. Arthritis Res. Therapy 15:R57–R57, 2013.

    CAS  Google Scholar 

  34. Robinson, D. E., D. J. Buttle, R. D. Short, S. L. McArthur, D. A. Steele, and J. D. Whittle. Glycosaminoglycan (GAG) binding surfaces for characterizing GAG-protein interactions. Biomaterials 33:1007–1016, 2012.

    CAS  PubMed  Google Scholar 

  35. Saporito, F., G. Sandri, M. C. Bonferoni, S. Rossi, L. Malavasi, C. D. Fante, B. Vigani, L. Black, and F. Ferrari. Electrospun gelatin-chondroitin sulfate scaffolds loaded with platelet lysate promote immature cardiomyocyte proliferation. Polymers 10:208, 2018.

    PubMed Central  Google Scholar 

  36. Schaffellner, S., V. Stadlbauer, P. Stiegler, O. Hauser, G. Halwachs, C. Lackner, F. Iberer, and K. H. Tscheliessnigg. Porcine islet cells microencapsulated in sodium cellulose sulfate. Transplant. Proc. 37:248–252, 2005.

    CAS  PubMed  Google Scholar 

  37. Shanmugasundaram, S., H. Chaudhry, and T. L. Arinzeh. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng. A 17:831–840, 2010.

    Google Scholar 

  38. Skotak, M., S. Noriega, G. Larsen, and A. Subramanian. Electrospun cross-linked gelatin fibers with controlled diameter: the effect of matrix stiffness on proliferative and biosynthetic activity of chondrocytes cultured in vitro. J. Biomed. Mater. Res. A 95A:828–836, 2010.

    CAS  Google Scholar 

  39. Sophia-Fox, A. J., A. Bedi, and S. A. Rodeo. The basic science of articular cartilage: structure, composition, and function. Sports Health 1:461–468, 2009.

    PubMed  PubMed Central  Google Scholar 

  40. Stone, A. Microbicides: a new approach to preventing HIV and other sexually transmitted infections. Nat. Rev. Drug Discov. 1:977, 2002.

    CAS  PubMed  Google Scholar 

  41. Temenoff, J. S., and A. G. Mikos. Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21:431–440, 2000.

    CAS  PubMed  Google Scholar 

  42. Ting, L., T. W. Keng, B. P. Chew, and C. S. Yian. Photochemical crosslinked electrospun collagen nanofibers: synthesis, characterization and neural stem cell interactions. J. Biomed. Mater. Res. A 95A:276–282, 2010.

    Google Scholar 

  43. Varghese, S., N. S. Hwang, A. C. Canver, P. Theprungsirikul, D. W. Lin, and J. Elisseeff. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biology 27:12–21, 2008.

    CAS  PubMed  Google Scholar 

  44. Wang, H., Y. Feng, Z. Fang, R. Xiao, W. Yuan, and M. Khan. Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering. Macromolecular Research 21:860–869, 2013.

    CAS  Google Scholar 

  45. Wirth, C. J., and M. Rudert. Techniques of cartilage growth enhancement: a review of the literature. Arthroscopy 12:300–308, 1996.

    CAS  PubMed  Google Scholar 

  46. Yoo, H. S., E. A. Lee, J. J. Yoon, and T. G. Park. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26:1925–1933, 2005.

    CAS  PubMed  Google Scholar 

  47. Zheng, W., W. Zhang, and X. Jiang. Biomimetic collagen nanofibrous materials for bone tissue engineering. Advanced Engineering Materials 12:B451–B466, 2010.

    Google Scholar 

Download references

Acknowledgments

We would like to thank support from Musculoskeletal Transplant Foundation and the National Science Foundation #1207173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Treena L. Arinzeh.

Additional information

Associate Editor Jennifer West oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1501 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, R., Arinzeh, T.L. Comparative Study of Electrospun Scaffolds Containing Native GAGs and a GAG Mimetic for Human Mesenchymal Stem Cell Chondrogenesis. Ann Biomed Eng 48, 2040–2052 (2020). https://doi.org/10.1007/s10439-020-02499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02499-9

Keywords

Navigation