Abstract
The barrier functions of the gastrointestinal tract rely in large part on a single layer of columnar intestinal epithelial cells. These epithelial cells are mediators of intestinal homeostasis, regulating and communicating biochemical signals between underlying stromal cells and luminal cues. The development of representative in vitro models to recapitulate the gastrointestinal epithelium is crucial to understanding cell–cell interactions during intestinal homeostasis and dysfunction. Ideally, models would contain microbiota/immune cells, polarized intestinal architecture, multilayered cellular complexity, extracellular matrix, biochemical cues, and mechanical deformation. This review focuses on historical and state of the art biomaterials and substrates used in the field to establish static and fluidic models of the intestinal epithelium. A discussion of conventional adenocarcinoma colon cancer cell lines, primary intestinal epithelial cells derived from organoids, and stromal support cells such as enteric neurons, myofibroblasts, and immune cells, as well as the importance of increasing cellular complexity and future outlook is included.
Similar content being viewed by others
References
Altay, G., E. Larranaga, S. Tosi, F. M. Barriga, E. Batlle, V. Fernandez-Majada, and E. Martinez. Self-organized intestinal epithelial monolayers in crypt and villus-like domains show effective barrier function. Sci. Rep. 9(1):10140, 2019.
Andrews, C., M. H. McLean, and S. K. Durum. Cytokine tuning of intestinal epithelial function. Front. Immunol. 9:1270, 2018.
Artursson, P., K. Palm, and K. Luthman. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 46(1–3):27–43, 2001.
Barber, K., L. Studer, and F. Fattahi. Derivation of enteric neuron lineages from human pluripotent stem cells. Nat. Protoc. 14(4):1261–1279, 2019.
Barrila, J., A. Crabbe, J. Yang, K. Franco, S. D. Nydam, R. J. Forsyth, R. R. Davis, S. Gangaraju, C. M. Ott, C. B. Coyne, M. J. Bissell, and C. A. Nickerson. Modeling host-pathogen interactions in the context of the microenvironment: three-dimensional cell culture comes of age. Infect Immunol. 2018. https://doi.org/10.1128/IAI.00282-18.
Bartfeld, S., T. Bayram, M. van de Wetering, M. Huch, H. Begthel, P. Kujala, R. Vries, P. J. Peters, and H. Clevers. In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126–136, 2015.
Bartfeld, S., and H. Clevers. Organoids as model for infectious diseases: culture of human and murine stomach organoids and microinjection of Helicobacter pylori. J Vis Exp 105:e53359, 2015.
Bein, A., W. Shin, S. Jalili-Firoozinezhad, M. H. Park, A. Sontheimer-Phelps, A. Tovaglieri, A. Chalkiadaki, H. J. Kim, and D. E. Ingber. Microfluidic Organ-on-a-chip models of human intestine. Cell Mol. Gastroenterol. Hepatol. 5(4):659–668, 2018.
Berthoud, H. R., A. Jedrzejewska, and T. L. Powley. Simultaneous labeling of vagal innervation of the gut and afferent projections from the visceral forebrain with dil injected into the dorsal vagal complex in the rat. J. Comp. Neurol. 301(1):65–79, 1990.
Bjerknes, M., and H. Cheng. Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc. Natl. Acad. Sci. USA 98(22):12497–12502, 2001.
Bricks, T., P. Paullier, A. Legendre, M. J. Fleury, P. Zeller, F. Merlier, P. M. Anton, and E. Leclerc. Development of a new microfluidic platform integrating co-cultures of intestinal and liver cell lines. Toxicol. In Vitro 28(5):885–895, 2014.
Brun, P., M. C. Giron, M. Qesari, A. Porzionato, V. Caputi, C. Zoppellaro, S. Banzato, A. R. Grillo, L. Spagnol, and R. De Caro. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 145(6):1323–1333, 2013.
Cabarrocas, J., T. C. Savidge, and R. S. Liblau. Role of enteric glial cells in inflammatory bowel disease. Glia 41(1):81–93, 2003.
Calatayud, M., O. Dezutter, E. Hernandez-Sanabria, S. Hidalgo-Martinez, F. J. Meysman, and T. Van de Wiele. Development of a host–microbiome model of the small intestine. FASEB J. 33(3):3985–3996, 2018.
Capeling, M. M., M. Czerwinski, S. Huang, Y. H. Tsai, A. Wu, M. S. Nagy, B. Juliar, N. Sundaram, Y. Song, W. M. Han, S. Takayama, E. Alsberg, A. J. Garcia, M. Helmrath, A. J. Putnam, and J. R. Spence. Nonadhesive alginate hydrogels support growth of pluripotent stem cell-derived intestinal organoids. Stem Cell Rep. 12(2):381–394, 2019.
Cash, B., S. Sullivan, and V. Barghout. Total costs of IBS: employer and managed care perspective. Am. J. Manage. Care 11(1 Suppl):S7–S16, 2005.
Chan, H. F., R. Zhao, G. A. Parada, H. Meng, K. W. Leong, L. G. Griffith, and X. Zhao. Folding artificial mucosa with cell-laden hydrogels guided by mechanics models. Proc. Natl. Acad. Sci. U.S.A. 115(29):7503–7508, 2018.
Chassaing, B., M. Kumar, M. T. Baker, V. Singh, and M. Vijay-Kumar. Mammalian gut immunity. Biomed J 37(5):246–258, 2014.
Chen, W. L. K., C. Edington, E. Suter, J. Yu, J. J. Velazquez, J. G. Velazquez, M. Shockley, E. M. Large, R. Venkataramanan, D. J. Hughes, C. L. Stokes, D. L. Trumper, R. L. Carrier, M. Cirit, L. G. Griffith, and D. A. Lauffenburger. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk. Biotechnol. Bioeng. 114(11):2648–2659, 2017.
Chen, Y., Y. Lin, K. M. Davis, Q. Wang, J. Rnjak-Kovacina, C. Li, R. R. Isberg, C. A. Kumamoto, J. Mecsas, and D. L. Kaplan. Robust bioengineered 3D functional human intestinal epithelium. Sci. Rep. 5:13708, 2015.
Chen, H. J., P. Miller, and M. L. Shuler. A pumpless body-on-a-chip model using a primary culture of human intestinal cells and a 3D culture of liver cells. Lab. Chip 18(14):2036–2046, 2018.
Chen, Y., W. Zhou, T. Roh, M. K. Estes, and D. L. Kaplan. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses. PLoS ONE 12(11):e0187880, 2017.
Co, J. Y., M. Margalef-Catala, X. Li, A. T. Mah, C. J. Kuo, D. M. Monack, and M. R. Amieva. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep 26(9):2509–2520, 2019.
Costantini, T. W., V. Bansal, M. Krzyzaniak, J. G. Putnam, C. Y. Peterson, W. H. Loomis, P. Wolf, A. Baird, B. P. Eliceiri, and R. Coimbra. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299(6):G1308–G1318, 2010.
Costello, C. M., J. Hongpeng, S. Shaffiey, J. Yu, N. K. Jain, D. Hackam, and J. C. March. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol. Bioeng. 111(6):1222–1232, 2014.
Costello, C. M., M. B. Phillipsen, L. M. Hartmanis, M. A. Kwasnica, V. Chen, D. Hackam, M. W. Chang, W. E. Bentley, and J. C. March. Microscale Bioreactors for in situ characterization of GI epithelial cell physiology. Sci. Rep. 7(1):12515, 2017.
Costello, C. M., R. M. Sorna, Y. L. Goh, I. Cengic, N. K. Jain, and J. C. March. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics. Mol. Pharm. 11(7):2030–2039, 2014.
Cruz-Acuna, R., M. Quiros, A. E. Farkas, P. H. Dedhia, S. Huang, D. Siuda, V. Garcia-Hernandez, A. J. Miller, J. R. Spence, A. Nusrat, and A. J. Garcia. Synthetic hydrogels for human intestinal organoid generation and colonic wound repair. Nat. Cell Biol. 19(11):1326–1335, 2017.
DeForest, C. A., and D. A. Tirrell. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14(5):523–531, 2015.
Devriese, S., L. Van den Bossche, S. Van Welden, T. Holvoet, I. Pinheiro, P. Hindryckx, M. De Vos, and D. Laukens. T84 monolayers are superior to Caco-2 as a model system of colonocytes. Histochem. Cell Biol. 148(1):85–93, 2017.
Dharmsathaphorn, K., J. A. Mcroberts, K. G. Mandel, L. D. Tisdale, and H. Masui. A human colonic tumor-cell line that maintains vectorial electrolyte transport. Am. J. Physiol. 246(2):G204–G208, 1984.
DiMarco, R. L., J. Su, K. S. Yan, R. Dewi, C. J. Kuo, and S. C. Heilshorn. Engineering of three-dimensional microenvironments to promote contractile behavior in primary intestinal organoids. Integr. Biol. (Camb.) 6(2):127–142, 2014.
Donohoe, C. L., and J. V. Reynolds. Short bowel syndrome. The Surgeon 8(5):270–279, 2010.
Dosh, R. H., A. Essa, N. Jordan-Mahy, C. Sammon, and C. L. Le Maitre. Use of hydrogel scaffolds to develop an in vitro 3D culture model of human intestinal epithelium. Acta Biomater. 62:128–143, 2017.
Dosh, R. H., N. Jordan-Mahy, C. Sammon, and C. L. Le Maitre. Long-term in vitro 3D hydrogel co-culture model of inflammatory bowel disease. Sci. Rep. 9(1):1812, 2019.
Doshi, J. A., Q. Cai, J. L. Buono, W. M. Spalding, P. Sarocco, H. Tan, J. J. Stephenson, and R. T. Carson. Economic burden of irritable bowel syndrome with constipation: a retrospective analysis of health care costs in a commercially insured population. J. Manage. Care Spec. Pharm. 20(4):382–390, 2014.
Drossman, D. A. J. G. The functional gastrointestinal disorders and the Rome III process. Gastroenterology 130(5):1377–1390, 2006.
Drossman, D. A. J. G. Functional gastrointestinal disorders: history, pathophysiology, clinical features, and Rome IV. Gastroenterology 150(6):1262–1279, 2016.
Edington, C. D., W. L. K. Chen, E. Geishecker, T. Kassis, L. R. Soenksen, B. M. Bhushan, D. Freake, J. Kirschner, C. Maass, N. Tsamandouras, J. Valdez, C. D. Cook, T. Parent, S. Snyder, J. Yu, E. Suter, M. Shockley, J. Velazquez, J. J. Velazquez, L. Stockdale, J. P. Papps, I. Lee, N. Vann, M. Gamboa, M. E. LaBarge, Z. Zhong, X. Wang, L. A. Boyer, D. A. Lauffenburger, R. L. Carrier, C. Communal, S. R. Tannenbaum, C. L. Stokes, D. J. Hughes, G. Rohatgi, D. L. Trumper, M. Cirit, and L. G. Griffith. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 8(1):4530, 2018.
Evans, G. S., N. Flint, A. S. Somers, B. Eyden, and C. S. Potten. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 101(Pt 1):219–231, 1992.
Everhart, J. E., and C. E. Ruhl. Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology 136(2):376–386, 2009.
Fattahi, F., J. A. Steinbeck, S. Kriks, J. Tchieu, B. Zimmer, S. Kishinevsky, N. Zeltner, Y. Mica, W. El-Nachef, H. Zhao, E. de Stanchina, M. D. Gershon, T. C. Grikscheit, S. Chen, and L. Studer. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531(7592):105–109, 2016.
Finkbeiner, S. R., J. J. Freeman, M. M. Wieck, W. El-Nachef, C. H. Altheim, Y. H. Tsai, S. Huang, R. Dyal, E. S. White, T. C. Grikscheit, D. H. Teitelbaum, and J. R. Spence. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol. Open 4(11):1462–1472, 2015.
Fordham, R. P., S. Yui, N. R. Hannan, C. Soendergaard, A. Madgwick, P. J. Schweiger, O. H. Nielsen, L. Vallier, R. A. Pedersen, T. Nakamura, M. Watanabe, and K. B. Jensen. Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13(6):734–744, 2013.
Franck, D., Y. G. Chung, J. Coburn, D. L. Kaplan, C. R. Estrada, Jr, and J. R. Mauney. In vitro evaluation of bi-layer silk fibroin scaffolds for gastrointestinal tissue engineering. J. Tissue Eng. 5:2041731414556849, 2014.
Furness, J. B. Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 81(1–3):87–96, 2000.
Furness, J. B. The enteric nervous system: normal functions and enteric neuropathies. Neurogastroenterol. Motil. 20(Suppl 1):32–38, 2008.
Furness, J. B. The Enteric Nervous System. Hoboken: Wiley, 2008.
Furness, J. B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol. 9(5):286–294, 2012.
Furness, J. B., and M. Costa. Types of nerves in the enteric nervous system. Neuroscience 5(1):1–20, 1980.
Furness, J. B., and M. Costa. The Enteric Nervous System. Edinburgh: Churchill Livingstone, 1987.
Gayer, C. P., and M. D. Basson. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal 21(8):1237–1244, 2009.
Gershon, M. Quiet but powerful: the role of the enteric nervous system in the pathophysiology of gastrointestinal disease (214.1). FASEB J. 28(1 Supplement):214.1, 2014.
Gibbons, D. L., and J. Spencer. Mouse and human intestinal immunity: same ballpark, different players; different rules, same score. Mucosal Immunol. 4(2):148–157, 2011.
Gjorevski, N., N. Sachs, A. Manfrin, S. Giger, M. E. Bragina, P. Ordonez-Moran, H. Clevers, and M. P. Lutolf. Designer matrices for intestinal stem cell and organoid culture. Nature 539(7630):560–564, 2016.
Graham, M. F., R. F. Diegelmann, C. O. Elson, W. J. Lindblad, N. Gotschalk, S. Gay, and R. Gay. Collagen content and types in the intestinal strictures of Crohn’s disease. Gastroenterology 94(2):257–265, 1988.
Greicius, G., Z. Kabiri, K. Sigmundsson, C. Liang, R. Bunte, M. K. Singh, and D. M. Virshup. PDGFRalpha(+) pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc. Natl. Acad. Sci. USA 115(14):E3173–E3181, 2018.
Grossmann, J., K. Walther, M. Artinger, S. Kiessling, M. Steinkamp, W. K. Schmautz, F. Stadler, F. Bataille, M. Schultz, J. Scholmerich, and G. Rogler. Progress on isolation and short-term ex vivo culture of highly purified non-apoptotic human intestinal epithelial cells (IEC). Eur. J. Cell Biol. 82(5):262–270, 2003.
Gunasekara, D. B., M. DiSalvo, Y. Wang, D. L. Nguyen, M. I. Reed, J. Speer, C. E. Sims, S. T. Magness, and N. L. Allbritton. Development of arrayed colonic organoids for screening of secretagogues associated with enterotoxins. Anal. Chem. 90(3):1941–1950, 2018.
Gunasekara, D. B., J. Speer, Y. Wang, D. L. Nguyen, M. I. Reed, N. M. Smiddy, J. S. Parker, J. K. Fallon, P. C. Smith, C. E. Sims, S. T. Magness, and N. L. Allbritton. A monolayer of primary colonic epithelium generated on a scaffold with a gradient of stiffness for drug transport studies. Anal. Chem. 90(22):13331–13340, 2018.
Hernandez-Gordillo, V., T. Kassis, A. Lampejo, G. Choi, M. E. Gamboa, J. S. Gnecco, D. T. Breault, R. Carrier, and L. G. Griffith. Niche-inspired synthetic matrices for epithelial organoid culture. bioRxiv 2019. https://doi.org/10.1101/806919.
Hughes, C. S., L. M. Postovit, and G. A. Lajoie. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890, 2010.
Imura, Y., Y. Asano, K. Sato, and E. Yoshimura. A microfluidic system to evaluate intestinal absorption. Anal. Sci. 25(12):1403–1407, 2009.
Imura, Y., K. Sato, and E. Yoshimura. Micro total bioassay system for ingested substances: assessment of intestinal absorption, hepatic metabolism, and bioactivity. Anal. Chem. 82(24):9983–9988, 2010.
Jabaji, Z., G. J. Brinkley, H. A. Khalil, C. M. Sears, N. Y. Lei, M. Lewis, M. Stelzner, M. G. Martin, and J. C. Dunn. Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS ONE 9(9):e107814, 2014.
Janssen, A. W., and S. Kersten. The role of the gut microbiota in metabolic health. FASEB J. 29(8):3111–3123, 2015.
Jee, J. H., D. H. Lee, J. Ko, S. Hahn, S. Y. Jeong, H. K. Kim, E. Park, S. Y. Choi, S. Jeong, J. W. Lee, H. J. Cho, M. S. Kwon, and J. Yoo. Development of collagen-based 3D matrix for gastrointestinal tract-derived organoid culture. Stem Cells Int. 2019. https://doi.org/10.1155/2019/8472712.
Kabiri, Z., G. Greicius, B. Madan, S. Biechele, Z. Zhong, H. Zaribafzadeh, Edison, J. Aliyev, Y. Wu, R. Bunte, B. O. Williams, J. Rossant, and D. M. Virshup. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts. Development 141(11):2206–2215, 2014.
Kang, H.-W., S. J. Lee, I. K. Ko, C. Kengla, J. J. Yoo, and A. Atala. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34(3):312, 2016.
Kanzato, H., M. Manabe, and M. Shimizu. An in vitro approach to the evaluation of the cross talk between intestinal epithelium and macrophages. Biosci. Biotechnol. Biochem. 65(2):449–451, 2001.
Kasendra, M., A. Tovaglieri, A. Sontheimer-Phelps, S. Jalili-Firoozinezhad, A. Bein, A. Chalkiadaki, W. Scholl, C. Zhang, H. Rickner, C. A. Richmond, H. Li, D. T. Breault, and D. E. Ingber. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci Rep 8(1):2871, 2018.
Kashfi, S. M. H., S. Almozyan, N. Jinks, B. K. Koo, and A. S. Nateri. Morphological alterations of cultured human colorectal matched tumour and healthy organoids. Oncotarget 9(12):10572–10584, 2018.
Keku, T. O., S. Dulal, A. Deveaux, B. Jovov, and X. Han. The gastrointestinal microbiota and colorectal cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 308(5):G351–G363, 2014.
Kim, H. J., D. Huh, G. Hamilton, and D. E. Ingber. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab. Chip 12(12):2165–2174, 2012.
Kim, H. J., and D. E. Ingber. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. (Camb.) 5(9):1130–1140, 2013.
Kim, H. J., H. Li, J. J. Collins, and D. E. Ingber. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. USA 113(1):E7–E15, 2016.
Kim, R., Y. Wang, S. J. Hwang, P. J. Attayek, N. M. Smiddy, M. I. Reed, C. E. Sims, and N. L. Allbritton. Formation of arrays of planar, murine, intestinal crypts possessing a stem/proliferative cell compartment and differentiated cell zone. Lab Chip 18(15):2202–2213, 2018.
Kimura, H., T. Yamamoto, H. Sakai, Y. Sakai, and T. Fujii. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip 8(5):741–746, 2008.
Kingsley, D. M., C. H. McCleery, C. D. L. Johnson, M. T. K. Bramson, D. Rende, R. J. Gilbert, and D. T. Corr. Multi-modal characterization of polymeric gels to determine the influence of testing method on observed elastic modulus. J. Mech. Behav. Biomed. Mater. 92:152–161, 2019.
Koloski, N., M. Jones, J. Kalantar, M. Weltman, J. Zaguirre, and N. Talley. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut 61(9):1284–1290, 2012.
Ladd, M. R., C. Costello, C. Gosztyla, A. Werts, B. Johnson, W. Fulton, L. Y. Martin, E. Redfield, B. Crawford, and R. Panaparambil. Development of intestinal scaffolds that mimic native mammalian intestinal tissue. Tissue Eng. 25:1225–1241, 2019.
Ladd, M. R., C. M. Costello, C. Gosztyla, A. D. Werts, B. Johnson, W. B. Fulton, L. Y. Martin, E. J. Redfield, B. Crawford, R. Panaparambil, C. P. Sodhi, J. C. March, and D. J. Hackam. Development of intestinal scaffolds that mimic native mammalian intestinal tissue. Tissue Eng. Part A 25(17–18):1225–1241, 2019.
Ladd, M. R., L. Y. Martin, A. Werts, C. Costello, C. P. Sodhi, W. B. Fulton, J. C. March, and D. J. Hackam. The development of newborn porcine models for evaluation of tissue-engineered small intestine. Tissue Eng. Part C Methods 24(6):331–345, 2018.
Lee, A., A. Hudson, D. Shiwarski, J. Tashman, T. Hinton, S. Yerneni, J. Bliley, P. Campbell, and A. Feinberg. 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452):482–487, 2019.
Lee, C. H., A. Singla, and Y. Lee. Biomedical applications of collagen. Int. J. Pharm. 221(1–2):1–22, 2001.
Leonard, F., E. M. Collnot, and C. M. Lehr. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in vitro. Mol. Pharm. 7(6):2103–2119, 2010.
Lesuffleur, T., A. Barbat, E. Dussaulx, and A. Zweibaum. Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res. 50(19):6334–6343, 1990.
Li, W., L. Huang, J. Zeng, W. Lin, K. Li, J. Sun, W. Huang, J. Chen, G. Wang, Q. Ke, J. Duan, X. Lai, R. Chen, M. Liu, Y. Liu, T. Wang, X. Yang, Y. Chen, H. Xia, and A. P. Xiang. Characterization and transplantation of enteric neural crest cells from human induced pluripotent stem cells. Mol. Psychiatry 23(3):499–508, 2018.
Li, X., A. Ootani, and C. Kuo. An air-liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods Mol. Biol. 1422:33–40, 2016.
Liu, Y., Z. Qi, X. Li, Y. Du, and Y. G. Chen. Monolayer culture of intestinal epithelium sustains Lgr5(+) intestinal stem cells. Cell Discov. 4:32, 2018.
Loftus, E. V. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 126(6):1504–1517, 2004.
Luu, L., L. J. Johnston, H. Derricott, S. D. Armstrong, N. Randle, C. S. Hartley, C. A. Duckworth, B. J. Campbell, J. M. Wastling, and J. L. Coombes. An open-format enteroid culture system for interrogation of interactions between toxoplasma gondii and the intestinal epithelium. Front. Cell Infect. Microbiol. 9:300, 2019.
Manousiouthakis, E., Y. Chen, D. M. Cairns, R. Pollard, K. Gerlovin, M. J. Dente, Y. Razavi, and D. L. Kaplan. Bioengineered in vitro enteric nervous system. J. Tissue Eng. Regen. Med. 13:1712–1723, 2019.
Martin, L. Y., M. R. Ladd, A. Werts, C. P. Sodhi, J. C. March, and D. J. Hackam. Tissue engineering for the treatment of short bowel syndrome in children. Pediatric Res. 83(1–2):249, 2018.
Martinez-Maqueda, D., B. Miralles, and I. Recio. HT29 Cell line. In: The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models, edited by K. Verhoeckx. Cham: Springer, 2015, pp. 113–124.
Maschmeyer, I., A. K. Lorenz, K. Schimek, T. Hasenberg, A. P. Ramme, J. Hubner, M. Lindner, C. Drewell, S. Bauer, A. Thomas, N. S. Sambo, F. Sonntag, R. Lauster, and U. Marx. A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab. Chip 15(12):2688–2699, 2015.
Masungi, C., C. Borremans, B. Willems, J. Mensch, A. Van Dijck, P. Augustijns, M. E. Brewster, and M. Noppe. Usefulness of a novel Caco-2 cell perfusion system. I. In vitro prediction of the absorption potential of passively diffused compounds. J. Pharm. Sci. 93(10):2507–2521, 2004.
Mayer, E. A. Gut feelings: the emerging biology of gut–brain communication. Nat. Rev. Neurosci. 12(8):453–466, 2011.
Merker, H. J. Morphology of the basement membrane. Microsc. Res. Tech. 28(2):95–124, 1994.
Miyoshi, H., R. Ajima, C. T. Luo, T. P. Yamaguchi, and T. S. Stappenbeck. Wnt5a potentiates TGF-beta signaling to promote colonic crypt regeneration after tissue injury. Science 338(6103):108–113, 2012.
Mowat, A. M., and W. W. Agace. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14(10):667–685, 2014.
Moyes, S. M., J. F. Morris, and K. E. Carr. Macrophages increase microparticle uptake by enterocyte-like Caco-2 cell monolayers. J. Anat. 217(6):740–754, 2010.
Mulle, J. G., W. G. Sharp, and J. F. Cubells. The gut microbiome: a new frontier in autism research. Curr. Psychiatry Rep. 15(2):337, 2013.
Munera, J. O., N. Sundaram, S. A. Rankin, D. Hill, C. Watson, M. Mahe, J. E. Vallance, N. F. Shroyer, K. L. Sinagoga, A. Zarzoso-Lacoste, J. R. Hudson, J. C. Howell, P. Chatuvedi, J. R. Spence, J. M. Shannon, A. M. Zorn, M. A. Helmrath, and J. M. Wells. Differentiation of human pluripotent stem cells into colonic organoids via transient activation of BMP signaling. Cell Stem Cell 21(1):51–64, 2017.
Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32(8):773, 2014.
Nee, J., M. Zakari, M. A. Sugarman, J. Whelan, W. Hirsch, S. Sultan, S. Ballou, J. Iturrino, and A. Lembo. Efficacy of treatments for opioid-induced constipation: systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 16(10):1569–1584, 2018.
Neunlist, M., P. Aubert, S. Bonnaud, L. Van Landeghem, E. Coron, T. Wedel, P. Naveilhan, A. Ruhl, B. Lardeux, T. Savidge, F. Paris, and J. P. Galmiche. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-beta1-dependent pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 292(1):G231–G241, 2007.
Neunlist, M., F. Toumi, T. Oreschkova, M. Denis, J. Leborgne, C. L. Laboisse, J. P. Galmiche, and A. Jarry. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 285(5):G1028–G1036, 2003.
Neunlist, M., F. Toumi, T. Oreschkova, M. Denis, J. Leborgne, C. L. Laboisse, J.-P. Galmiche, and A. Jarry. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am. J. Physiol.-Gastrointest. Liver Physiol. 285(5):G1028–G1036, 2003.
Noel, G., M. Doucet, J. P. Nataro, J. B. Kaper, N. C. Zachos, and M. F. Pasetti. Enterotoxigenic Escherichia coli is phagocytosed by macrophages underlying villus-like intestinal epithelial cells: modeling ex vivo innate immune defenses of the human gut. Gut Microbes 2017. https://doi.org/10.1080/19490976.2017.1398871.
Ootani, A., X. Li, E. Sangiorgi, Q. T. Ho, H. Ueno, S. Toda, H. Sugihara, K. Fujimoto, I. L. Weissman, M. R. Capecchi, and C. J. Kuo. Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat. Med. 15(6):701–706, 2009.
Pageot, L. P., N. Perreault, N. Basora, C. Francoeur, P. Magny, and J. F. Beaulieu. Human cell models to study small intestinal functions: recapitulation of the crypt-villus axis. Microsc. Res. Tech. 49(4):394–406, 2000.
Paris, F., Z. Fuks, A. Kang, P. Capodieci, G. Juan, D. Ehleiter, A. Haimovitz-Friedman, C. Cordon-Cardo, and R. Kolesnick. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science 293(5528):293–297, 2001.
Park, K., and D. Bass. Inflammatory bowel disease-attributable costs and cost-effective strategies in the United States: a review. Inflamm. Bowel Dis. 17(7):1603–1609, 2011.
Powell, D. W., P. A. Adegboyega, J. F. Di Mari, and R. C. Mifflin. Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am. J. Physiol. Gastrointest. Liver Physiol. 289(1):G2–G7, 2005.
Pusch, J., M. Votteler, S. Gohler, J. Engl, M. Hampel, H. Walles, and K. Schenke-Layland. The physiological performance of a three-dimensional model that mimics the microenvironment of the small intestine. Biomaterials 32(30):7469–7478, 2011.
Puzan, M., S. Hosic, C. Ghio, and A. Koppes. Enteric nervous system regulation of intestinal stem cell differentiation and epithelial monolayer function. Sci. Rep. 8(1):6313, 2018.
Quaroni, A., and R. J. May. Chapter 20 Establishment and characterization of intestinal epithelial cell cultures. In: Methods in Cell Biology, edited by C. C. Harris, B. F. Trump, and G. D. Stoner. Cambridge: Academic Press Inc., 1980, pp. 403–427.
Rousset, M. The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie 68(9):1035–1040, 1986.
Sambuy, Y., I. De Angelis, G. Ranaldi, M. L. Scarino, A. Stammati, and F. Zucco. The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol. Toxicol. 21(1):1–26, 2005.
Sampson, T. R., J. W. Debelius, T. Thron, S. Janssen, G. G. Shastri, Z. E. Ilhan, C. Challis, C. E. Schretter, S. Rocha, and V. Gradinaru. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480, 2016.
Sanders, K. M., S. D. Koh, S. Ro, and S. M. Ward. Regulation of gastrointestinal motility–insights from smooth muscle biology. Nat. Rev. Gastroenterol. Hepatol. 9(11):633–645, 2012.
Sato, T., D. E. Stange, M. Ferrante, R. G. Vries, J. H. Van Es, S. Van den Brink, W. J. Van Houdt, A. Pronk, J. Van Gorp, P. D. Siersema, and H. Clevers. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772, 2011.
Sato, T., R. G. Vries, H. J. Snippert, M. van de Wetering, N. Barker, D. E. Stange, J. H. van Es, A. Abo, P. Kujala, P. J. Peters, and H. Clevers. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265, 2009.
Savidge, T. C., P. Newman, C. Pothoulakis, A. Ruhl, M. Neunlist, A. Bourreille, R. Hurst, and M. V. Sofroniew. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132(4):1344–1358, 2007.
Schlieve, C. R., K. L. Fowler, M. Thornton, S. Huang, I. Hajjali, X. Hou, B. Grubbs, J. R. Spence, and T. C. Grikscheit. Neural crest cell implantation restores enteric nervous system function and alters the gastrointestinal transcriptome in human tissue-engineered small intestine. Stem Cell Rep. 9(3):883–896, 2017.
Schneeberger, K., S. Roth, E. E. S. Nieuwenhuis, and S. Middendorp. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Disease Models & Mechanisms 2018. https://doi.org/10.1242/dmm.031088.
Schwartz, D. M., M. O. Pehlivaner Kara, A. M. Goldstein, H. C. Ott, and A. K. Ekenseair. Spray delivery of intestinal organoids to reconstitute epithelium on decellularized native extracellular matrix. Tissue Eng. Part C Methods 23(9):565–573, 2017.
Semrad, C. E., and D. W. Powell. Approach to the patient with diarrhea and malabsorption. Cecil medicine (24th ed.). Philadelphia: Saunders Elsevier, 2011.
Shadish, J. A., G. M. Benuska, and C. A. DeForest. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18(9):1005–1014, 2019.
Shah, P., J. V. Fritz, E. Glaab, M. S. Desai, K. Greenhalgh, A. Frachet, M. Niegowska, M. Estes, C. Jager, C. Seguin-Devaux, F. Zenhausern, and P. Wilmes. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7:11535, 2016.
Shim, K. Y., D. Lee, J. Han, N. T. Nguyen, S. Park, and J. H. Sung. Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed. Microdevices 19(2):37, 2017.
Shin, W., C. D. Hinojosa, D. E. Ingber, and H. J. Kim. Human intestinal morphogenesis controlled by transepithelial morphogen gradient and flow-dependent physical cues in a microengineered gut-on-a-chip. iScience 15:391–406, 2019.
Shin, W., and H. J. Kim. Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip. Proc. Natl. Acad. Sci. U.S.A. 115(45):E10539–E10547, 2018.
Shin, W., A. Wu, M. W. Massidda, C. Foster, N. Thomas, D. W. Lee, H. Koh, Y. Ju, J. Kim, and H. J. Kim. A robust longitudinal co-culture of obligate anaerobic gut microbiome with human intestinal epithelium in an anoxic-oxic interface-on-a-chip. Front. Bioeng. Biotechnol. 7:13, 2019.
Shyer, A. E., T. Tallinen, N. L. Nerurkar, Z. Wei, E. S. Gil, D. L. Kaplan, C. J. Tabin, and L. Mahadevan. Villification: how the gut gets its villi. Science 342(6155):212–218, 2013.
Soucy, J. R., A. J. Bindas, A. N. Koppes, and R. A. Koppes. Instrumented microphysiological systems for real-time measurement and manipulation of cellular electrochemical processes. iScience 21:521–548, 2019.
Speer, J. E., D. B. Gunasekara, Y. Wang, J. K. Fallon, P. J. Attayek, P. C. Smith, C. E. Sims, and N. L. Allbritton. Molecular transport through primary human small intestinal monolayers by culture on a collagen scaffold with a gradient of chemical cross-linking. J Biol. Eng. 13:36, 2019.
Spence, J. R., C. N. Mayhew, S. A. Rankin, M. F. Kuhar, J. E. Vallance, K. Tolle, E. E. Hoskins, V. V. Kalinichenko, S. I. Wells, A. M. Zorn, N. F. Shroyer, and J. M. Wells. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470(7332):105–109, 2011.
Sung, J. H., J. Yu, D. Luo, M. L. Shuler, and J. C. March. Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip 11(3):389–392, 2011.
Susewind, J., C. D. Carvalho-Wodarz, U. Repnik, E. M. Collnot, N. Schneider-Daum, G. W. Griffiths, and C. M. Lehr. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology 10(1):53–62, 2016.
Talley, N. J. N. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol. Motil. 20:121–129, 2008.
Talley, N. Functional gastrointestinal disorders as a public health problem. Neurogastroenterol. Motil. 20(s1):121–129, 2008.
Tan, H. Y., S. Trier, U. L. Rahbek, M. Dufva, J. P. Kutter, and T. L. Andresen. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. PLoS ONE 13(5):e0197101, 2018.
Thursby, E., and N. Juge. Introduction to the human gut microbiota. Biochem J 474(11):1823–1836, 2017.
Tong, Z., K. Martyn, A. Yang, X. Yin, B. E. Mead, N. Joshi, N. E. Sherman, R. S. Langer, and J. M. Karp. Towards a defined ECM and small molecule based monolayer culture system for the expansion of mouse and human intestinal stem cells. Biomaterials 154:60–73, 2018.
Valenta, T., B. Degirmenci, A. E. Moor, P. Herr, D. Zimmerli, M. B. Moor, G. Hausmann, C. Cantu, M. Aguet, and K. Basler. Wnt ligands secreted by subepithelial mesenchymal cells are essential for the survival of intestinal stem cells and gut homeostasis. Cell Rep. 15(5):911–918, 2016.
van der Flier, L. G., and H. Clevers. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71:241–260, 2009.
Van Landeghem, L., J. Chevalier, M. M. Mahe, T. Wedel, P. Urvil, P. Derkinderen, T. Savidge, and M. Neunlist. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am. J. Physiol. Gastrointest. Liver Physiol. 300(6):G976–G987, 2011.
Vancamelbeke, M., T. Laeremans, W. Vanhove, K. Arnauts, A. S. Ramalho, R. Farre, I. Cleynen, M. Ferrante, and S. Vermeire. Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis. J. Crohns Colitis 13(10):1351–1361, 2019.
Vishwakarma, A., and J. Karp. Biology and Engineering of Stem Cell Niches. London: Elsevier/Academic Press, p. 625, 2017.
Vishy, C. E., E. A. Swietlicki, V. Gazit, S. Amara, G. Heslop, J. Lu, M. S. Levin, and D. C. Rubin. Epimorphin regulates the intestinal stem cell niche via effects on the stromal microenvironment. Am. J. Physiol. Gastrointest. Liver Physiol. 315(2):G185–G194, 2018.
Vukicevic, S., H. K. Kleinman, F. P. Luyten, A. B. Roberts, N. S. Roche, and A. H. Reddi. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202(1):1–8, 1992.
Wang, Y., M. DiSalvo, D. B. Gunasekara, J. Dutton, A. Proctor, M. S. Lebhar, I. A. Williamson, J. Speer, R. L. Howard, N. M. Smiddy, S. J. Bultman, C. E. Sims, S. T. Magness, and N. L. Allbritton. Self-renewing monolayer of primary colonic or rectal epithelial cells. Cell Mol. Gastroenterol. Hepatol. 4(1):165–182, 2017.
Wang, Y., D. B. Gunasekara, M. I. Reed, M. DiSalvo, S. J. Bultman, C. E. Sims, S. T. Magness, and N. L. Allbritton. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 128:44–55, 2017.
Wang, Y., R. Kim, D. B. Gunasekara, M. I. Reed, M. DiSalvo, D. L. Nguyen, S. J. Bultman, C. E. Sims, S. T. Magness, and N. L. Allbritton. Formation of human colonic crypt array by application of chemical gradients across a shaped epithelial monolayer. Cell. Mol. Gastroenterol. Hepatol. 5(2):113–130, 2018.
Wang, Z., E. Klipfell, B. J. Bennett, R. Koeth, B. S. Levison, B. DuGar, A. E. Feldstein, E. B. Britt, X. Fu, and Y.-M. Chung. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472(7341):57, 2011.
Wang, L., S. K. Murthy, G. A. Barabino, and R. L. Carrier. Synergic effects of crypt-like topography and ECM proteins on intestinal cell behavior in collagen based membranes. Biomaterials 31(29):7586–7598, 2010.
Watson, C. L., M. M. Mahe, J. Munera, J. C. Howell, N. Sundaram, H. M. Poling, J. I. Schweitzer, J. E. Vallance, C. N. Mayhew, Y. Sun, G. Grabowski, S. R. Finkbeiner, J. R. Spence, N. F. Shroyer, J. M. Wells, and M. A. Helmrath. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20(11):1310–1314, 2014.
Winge, K., D. Rasmussen, and L. M. Werdelin. Constipation in neurological diseases. J. Neurol. Neurosurg. Psychiatry 74(1):13–19, 2003.
Workman, M. J., M. M. Mahe, S. Trisno, H. M. Poling, C. L. Watson, N. Sundaram, C. F. Chang, J. Schiesser, P. Aubert, E. G. Stanley, A. G. Elefanty, Y. Miyaoka, M. A. Mandegar, B. R. Conklin, M. Neunlist, S. A. Brugmann, M. A. Helmrath, and J. M. Wells. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat. Med. 23(1):49–59, 2017.
Yin, X., H. F. Farin, J. H. van Es, H. Clevers, R. Langer, and J. M. Karp. Niche-independent high-purity cultures of Lgr5 + intestinal stem cells and their progeny. Nat. Methods 11(1):106–112, 2014.
Yu, J., S. Peng, D. Luo, and J. C. March. In vitro 3D human small intestinal villous model for drug permeability determination. Biotechnol. Bioeng. 109(9):2173–2178, 2012.
Yui, S., L. Azzolin, M. Maimets, M. T. Pedersen, R. P. Fordham, S. L. Hansen, H. L. Larsen, J. Guiu, M. R. P. Alves, C. F. Rundsten, J. V. Johansen, Y. Li, C. D. Madsen, T. Nakamura, M. Watanabe, O. H. Nielsen, P. J. Schweiger, S. Piccolo, and K. B. Jensen. YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration. Cell Stem Cell 22(1):35–49, 2018.
Yui, S., T. Nakamura, T. Sato, Y. Nemoto, T. Mizutani, X. Zheng, S. Ichinose, T. Nagaishi, R. Okamoto, and K. Tsuchiya. Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5 + stem cell. Nat. Med. 18(4):618–623, 2012.
Acknowledgment
The authors thank Northeastern University for support.
Funding
The authors are not aware of any affiliations, memberships, funding, or financial holdings that might be perceived as affecting the objectivity of this review.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Erin Lavik oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Snyder, J., Wang, CM., Zhang, A.Q. et al. Materials and Microenvironments for Engineering the Intestinal Epithelium. Ann Biomed Eng 48, 1916–1940 (2020). https://doi.org/10.1007/s10439-020-02470-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-020-02470-8