Skip to main content
Log in

Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Stiffness gradient hydrogels are a useful platform for studying mechanical interactions between cells and their surrounding environments. Here, we developed linear stiffness gradient hydrogels by controlling the polymerization of gelatin methacryloyl (GelMA) via differential UV penetration with a gradient photomask. Based on previous observations, a stiffness gradient GelMA hydrogel was created ranging from ~ 4 to 13 kPa over 15 mm (0.68 kPa/mm), covering the range of physiological tissue stiffness from fat to muscle, thereby allowing us to study stem cell mechanosensation and differentiation. Adipose-derived stem cells on these gradient hydrogels showed no durotaxis, which allowed for the screening of mechanomarker expression without confounding directed migration effects. In terms of morphological markers, the cell aspect ratio showed a clear positive correlation to the underlying substrate stiffness, while no significant correlation was found in cell size, nuclear size, or nuclear aspect ratio. Conversely, expression of mechanomarkers (i.e., Lamin A, YAP, and MRTFa) all showed a highly significant correlation to stiffness, which could be disrupted via inhibition of non-muscle myosin or Rho/ROCK signalling. Furthermore, we showed that cells plated on stiffer regions became stiffer themselves, and that stem cells showed stiffness-dependent differentiation to fat or muscle as has been previously reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Berry, M. F., A. J. Engler, Y. J. Woo, T. J. Pirolli, L. T. Bish, V. Jayasankar, K. J. Morine, T. J. Gardner, D. E. Discher, and H. L. Sweeney. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am. J. Physiol.-Heart Circ. Physiol. 290(6):H2196–H2203, 2006.

    Article  CAS  Google Scholar 

  2. Caliari, S. R., S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103:314–323, 2016.

    Article  CAS  Google Scholar 

  3. Choi, Y. S., L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler. Mechanical derivation of functional myotubes from adipose-derived stem cells. Biomaterials 33(8):2482–2491, 2012.

    Article  CAS  Google Scholar 

  4. Choi, Y. S., L. G. Vincent, A. R. Lee, K. C. Kretchmer, S. Chirasatitsin, M. K. Dobke, and A. J. Engler. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 33(29):6943–6951, 2012.

    Article  CAS  Google Scholar 

  5. Colthup, N., L. Daly, and S. Wiberley. Introduction to Infrared and Raman Spectroscopy (3rd ed.). New York: Academic Press, 1990.

    Google Scholar 

  6. Cross, L. M., K. Shah, S. Palani, C. W. Peak, and A. K. Gaharwar. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomedicine 14(7):2465–2474, 2018.

    Article  CAS  Google Scholar 

  7. Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.

    Article  CAS  Google Scholar 

  8. Dupont, S., L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo. Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183, 2011.

    Article  CAS  Google Scholar 

  9. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.

    Article  CAS  Google Scholar 

  10. Hadden, W. J., J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. USA 114(22):5647–5652, 2017.

    Article  CAS  Google Scholar 

  11. Happe, C. L., K. P. Tenerelli, A. K. Gromova, F. Kolb, and A. J. Engler. Mechanically patterned neuromuscular junctions-in-a-dish have improved functional maturation. Mol. Biol. Cell 28(14):1950–1958, 2017.

    Article  CAS  Google Scholar 

  12. Hartman, C. D., B. C. Isenberg, S. G. Chua, and J. Y. Wong. Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proc. Natl. Acad. Sci. USA 113(40):11190–11195, 2016.

    Article  CAS  Google Scholar 

  13. Janko, M., A. Zink, A. Gigler, W. Heckl, and R. Stark. Nanostructure and mechanics of mummified type I collagen from the 5300-year-old tyrolean Iceman. Proc. R. Soc. B 277(1692):2301–2309, 2010.

    Article  Google Scholar 

  14. Kang, H., Y. V. Shih, Y. Hwang, C. Wen, V. Rao, T. Seo, and S. Varghese. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 10(12):4961–4970, 2014.

    Article  CAS  Google Scholar 

  15. Kloxin, A. M., J. A. Benton, and K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31(1):1–8, 2010.

    Article  CAS  Google Scholar 

  16. Kovacs, M., J. Toth, C. Hetenyi, A. Malnasi-Csizmadia, and J. R. Sellers. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279(34):35557–35563, 2004.

    Article  CAS  Google Scholar 

  17. Kumper, S., and C. J. Marshall. ROCK-driven actomyosin contractility induces tissue stiffness and tumor growth. Cancer Cell 19(6):695–697, 2011.

    Article  Google Scholar 

  18. Lee, H. P., R. Stowers, and O. Chaudhuri. Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. Nat. Commun. 10(1):529, 2019.

    Article  Google Scholar 

  19. Leijten, J., J. Seo, K. Yue, G. T. Santiago, A. Tamayol, G. U. Ruiz-Esparza, S. R. Shin, R. Sharifi, I. Noshadi, M. M. Alvarez, Y. S. Zhang, and A. Khademhosseini. Spatially and temporally controlled hydrogels for tissue engineering. Mater. Sci. Eng. 119:1–35, 2017.

    Article  Google Scholar 

  20. Major, L. G., A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi. Volume adaptation controls stem cell mechanotransduction. ACS Appl. Mater. Interfaces, 2019.

  21. Miralles, F., G. Posern, A. I. Zaromytidou, and R. Treisman. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342, 2003.

    Article  CAS  Google Scholar 

  22. Nardone, G., J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skladal, M. Pesl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8:15321, 2017.

    Article  CAS  Google Scholar 

  23. O’Connell, C. D., B. Zhang, C. Onofrillo, S. Duchi, R. Blanchard, A. Quigley, J. Bourke, S. Gambhir, R. Kapsa, C. Di Bella, P. Choong, and G. G. Wallace. Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter 14(11):2142–2151, 2018.

    Article  Google Scholar 

  24. Piraino, F., G. Camci-Unal, M. J. Hancock, M. Rasponi, and A. Khademhosseini. Multi-gradient hydrogels produced layer by layer with capillary flow and crosslinking in open microchannels. Lab Chip 12(3):659–661, 2012.

    Article  CAS  Google Scholar 

  25. Reilly, G. C., and A. J. Engler. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43(1):55–62, 2010.

    Article  Google Scholar 

  26. Stiles, P., J. Dieringer, and N. Shah. Surface-enhanced raman spectroscopy. Annu. Rev. Anal. Chem. 1:601–626, 2008.

    Article  CAS  Google Scholar 

  27. Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. W. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104, 2013.

    Article  Google Scholar 

  28. Tse, J. R., and A. J. Engler. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6(1):e15978, 2011.

    Article  CAS  Google Scholar 

  29. Vincent, L. G., Y. S. Choi, B. Alonso-Latorre, J. C. del Alamo, and A. J. Engler. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8(4):472–484, 2013.

    Article  CAS  Google Scholar 

  30. Yu, O. M., S. Miyamoto, and J. H. Brown. Myocardin-related transcription factor A and Yes-associated protein exert dual control in G protein-coupled receptor- and RhoA-mediated transcriptional regulation and cell proliferation. Mol. Cell. Biol. 36(1):39–49, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, O. M., S. Miyamoto, and J. H. Brown. Myocardin-related transcription factor A and Yes-associated protein exert dual control in G protein-coupled receptor- and RhoA-mediated transcriptional regulation and cell proliferation. Mol. Cell. Biol. 36(1):39–49, 2016.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study work was supported by National Health and Medical Research Council Grant PG1098449 (to YSC), Heart Foundation Future Leader Fellowship 101173 (to YSC), Department of Health, Western Australia, Merit awards—Project and fellowship (to YSC), and Universities Australia DAAD German Research Cooperation 5744610 (to YSC, CK, AWH, JLY and JPS).

Author information

Authors and Affiliations

Authors

Contributions

CK, LGM and YSC designed and planned the study. JLY, AWH, and JPS performed SEM and pore size analysis. KJ and ZMA performed Raman spectroscopy. JHJ, YH and DWH synthesized GelMA. CK, JLY and YSC drafted the manuscript. YSC provided supervision and funding. All authors discussed the data and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Yu Suk Choi.

Additional information

Associate Editor Kent Leach oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C., Young, J.L., Holle, A.W. et al. Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels. Ann Biomed Eng 48, 893–902 (2020). https://doi.org/10.1007/s10439-019-02428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02428-5

Keywords

Navigation