Skip to main content

Advertisement

Log in

3D Printing in Medicine for Preoperative Surgical Planning: A Review

  • Review
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of this paper is to review the recent evolution of additive manufacturing (AM) within the medical field of preoperative surgical planning. The discussion begins with an overview of the different techniques, pointing out their advantages and disadvantages as well as an in-depth comparison of different characteristics of the printed parts. Then, the state-of-the-art with respect to preoperative surgical planning is presented. On the one hand, different surgical planning prototypes manufactured by several AM technologies are described. On the other hand, materials used for mimicking different living tissues are explored by focusing on the material properties: elastic modulus, hardness, etc. As a result, doctors can practice before performing surgery and thereby reduce the time needed for the operation. The subject of patient education is also introduced. A thorough review of the process that is required to obtain 3D printed surgical planning prototypes, which is based on different stages, is then carried out. Finally, the ethical issues associated with 3D printing in medicine are discussed, along with its future perspectives. Overall, this is important for improving the outcome of the surgery, since doctors will be able to visualize the affected organs and even to practice surgery before performing it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Abouna, G. M. Organ shortage crisis: problems and possible solutions. Transplant. Proc. 40:34–38, 2008.

    CAS  PubMed  Google Scholar 

  2. Adams, F., T. Qiu, A. Mark, B. Fritz, L. Kramer, D. Schlager, U. Wetterauer, A. Miernik, and P. Fischer. Soft 3D-printed phantom of the human kidney with collecting system. Ann. Biomed. Eng. 45:963–972, 2017.

    PubMed  Google Scholar 

  3. Agarwal, A., N. Borley, and G. McLatchie. Oxford Handbook of Operative Surgery. Oxford: Oxford University Press, 2017.

    Google Scholar 

  4. Akhtar, M. F., M. Hanif, and N. M. Ranjha. Methods of synthesis of hydrogels. A review. Saudi Pharm. J. 24:554–559, 2016.

    PubMed  Google Scholar 

  5. Anderson, J. R., W. L. Thompson, A. K. Alkattan, O. Diaz, R. Klucznik, Y. J. Zhang, G. W. Britz, R. G. Grossman, and C. Karmonik. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J. Neurointerv. Surg. 8:517–520, 2016.

    PubMed  Google Scholar 

  6. Andre, J. C., A. Le Mehaute, and O. De Witte. Dispositif pour realiser un module de piece industrielle., 1984. http://bases-brevets.inpi.fr/fr/document/FR2567668/publications.html.

  7. Arai, Y., E. Tammisalo, K. Iwai, K. Hashimoto, and K. Shinoda. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofacial Radiol. 28:245–248, 1999.

    CAS  Google Scholar 

  8. Ashby, M. F., L. J. Gibson, U. Wegst, and R. Olive. The mechanical properties of natural materials. Proc. R. Soc. Lond. A 450:123–140, 1995.

    Google Scholar 

  9. ASTM. D2240 Rubber Property—Durometer Hardness. West Conshohocken: ASTM, pp. 1–13, 2015. https://doi.org/10.1520/d2240-15.2.

    Book  Google Scholar 

  10. ASTM, I. ASTM52900-15 Standard Terminology for Additive Manufacturing—General Principles—Terminology. West Conshohocken, PA: ASTM International, 2015.

    Google Scholar 

  11. Attaran, M. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 60:677–688, 2017.

    Google Scholar 

  12. Azari, A., and S. Nikzad. The evolution of rapid prototyping in dentistry: A review. Rapid Prototyp. J. 15:216–225, 2009.

    Google Scholar 

  13. Banks, D. P., C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti. Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer. Appl. Phys. Lett. 89:10–12, 2006.

    Google Scholar 

  14. Barghout, L., and L. Lee. U.S. Patent No. 10/618.543. World Neurosurg. 117:99, 2004.

    Google Scholar 

  15. Berman, B. 3-D printing: the new industrial revolution. Bus. Horiz. 55:155–162, 2012.

    Google Scholar 

  16. Bernhard, J. C., S. Isotani, T. Matsugasumi, V. Duddalwar, A. J. Hung, E. Suer, E. Baco, R. Satkunasivam, H. Djaladat, C. Metcalfe, B. Hu, K. Wong, D. Park, M. Nguyen, D. Hwang, S. T. Bazargani, A. L. de Castro Abreu, M. Aron, O. Ukimura, and I. S. Gill. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J. Urol. 34:337–345, 2016.

    PubMed  Google Scholar 

  17. Biglino, G., C. Capelli, J. Wray, S. Schievano, L. K. Leaver, S. Khambadkone, A. Giardini, G. Derrick, A. Jones, and A. M. Taylor. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 5:e007165, 2015.

    PubMed  PubMed Central  Google Scholar 

  18. Biglino, G., D. Koniordou, M. Gasparini, C. Capelli, L. K. Leaver, S. Khambadkone, S. Schievano, A. M. Taylor, and J. Wray. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations. Pediatr. Cardiol. 38:813–818, 2017.

    PubMed  PubMed Central  Google Scholar 

  19. Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.

    CAS  PubMed  Google Scholar 

  20. Bohandy, J., B. F. Kim, and F. J. Adrian. Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60:1538–1539, 1986.

    CAS  Google Scholar 

  21. Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Mater. Today 16:496–504, 2013.

    CAS  Google Scholar 

  22. Buj-Corral, I., A. Bagheri, and O. Petit-Rojo. 3D printing of porous scaffolds with controlled porosity and pore size values. Materials (Basel). 11:1–18, 2018.

    Google Scholar 

  23. Chang, R., J. Nam, and W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 14:41–48, 2008.

    CAS  PubMed  Google Scholar 

  24. Chelu, R. G., D. van der Linder, and K. Nieman. Cardiovascular imaging in aneurysm-osteoarthritis syndrome. Aneurysms Osteoarthritis Syndr. 5:103–114, 2017.

    Google Scholar 

  25. Chen, Z., Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 39:661–687, 2019.

    CAS  Google Scholar 

  26. Chikwe, J., A. C. de Souza, and J. R. Pepper. No time to train the surgeons. BMJ 328:418–419, 2004.

    PubMed  PubMed Central  Google Scholar 

  27. Chockalingam, K., N. Jawahar, U. Chandrasekar, and K. N. Ramanathan. Establishment of process model for part strength in stereolithography. J. Mater. Process. Technol. 208:348–365, 2008.

    Google Scholar 

  28. Christensen, A. M., S. M. Humphries, K. Y. C. Goh, and D. Swift. Advanced “tactile” medical imaging for separation surgeries of conjoined twins. Child’s Nerv. Syst. 20:547–553, 2004.

    Google Scholar 

  29. Colton, J., B. Blair, and B. Blair. Experimental study of post-build cure of stereolithography polymers for injection. Rapid Prototyp J. 5:1–8, 2006.

    Google Scholar 

  30. Comb, J. FDM technology process improvements. Proc. Solid. pp. 42–49, 1994. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA290949#page=49.

  31. Cosma, C., U. T. Cluj-napoca, C. Moldovan, U. T. Cluj-napoca, R. I. Campbell, and A. Cosma. Theoretical analysis and practical case studies of powder-based additive manufacturing. Acta Technica Napocensis 61:401–408, 2018.

    Google Scholar 

  32. Crump, S. S. U.S. Patent No. 5121329. 1992.

  33. Cui, X., T. Boland, D. DD’Lima, and M. K. Lotz. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formul. 6:149–155, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dababneh, A. B., and I. T. Ozbolat. Bioprinting technology: a current state-of-the-art review. J. Manuf. Sci. Eng. 136:061016, 2014.

    Google Scholar 

  35. Dankelman, J., J. J. van den Dobbelsteen, L. H. Pluymen, T. L. de Jong, D. J. van Gerwen, and G.-J. Kleinrensink. PVA matches human liver in needle-tissue interaction. J. Mech. Behav. Biomed. Mater. 69:223–228, 2017.

    PubMed  Google Scholar 

  36. Davison, G. C. In reply: behaviour therapy. Br. J. Psychiatry 112:211–212, 1966.

    Google Scholar 

  37. de Ciurana, Q., Á. Fernández, and M. Monzón. Guía de tecnologías de rapid manufacturing. Girona: Documenta Universitaria, 2006.

    Google Scholar 

  38. Deckard, C. R. U.S. Patent No. 4863538. 1989.

  39. Derakhshanfar, S., R. Mbeleck, K. Xu, X. Zhang, W. Zhong, and M. Xing. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact. Mater. 3:144–156, 2018.

    PubMed  PubMed Central  Google Scholar 

  40. Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 101:1255–1264, 2013.

    Google Scholar 

  41. Duan, B., M. Wang, W. Y. Zhou, W. L. Cheung, Z. Y. Li, and W. W. Lu. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6:4495–4505, 2010.

    CAS  PubMed  Google Scholar 

  42. Ellis, A., L. Hartley, and N. Hopkinson. Effect of print density on the properties of high speed sintered elastomers. Metall. Mater. Trans. A 46:3883–3886, 2015.

    CAS  Google Scholar 

  43. Esteves, R., E. Esteves, N. Onukwuba, and B. Dikici. Determination of surfactant solution viscosities with a rotational viscometer. Undergraduate Res. J. 1(1):2, 2016.

    Google Scholar 

  44. Farooqi, K. M., O. Saeed, A. Zaidi, J. Sanz, J. C. Nielsen, D. T. Hsu, and U. P. Jorde. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail. 4:301–311, 2016.

    PubMed  Google Scholar 

  45. Fenollosa F. Contribució a l’estudi de la impressió 3D per a la fabricació de models per facilitar l’assaig d’operacions quirúrgiques de tumors. Barcelona: Universitat Politècnica de Catalunya, 2019.

    Google Scholar 

  46. Ferry, M. P. W., J. Feijen, and D. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.

    Google Scholar 

  47. Feuerhahn, F., A. Schulz, T. Seefeld, and F. Vollertsen. Microstructure and properties of selective laser melted high hardness tool steel. Phys. Procedia 41:843–848, 2013.

    CAS  Google Scholar 

  48. Flanagan, C. L., S. J. Hollister, R. M. Schek, S. E. Feinberg, S. Das, J. M. Williams, P. H. Krebsbach, and A. Adewunmi. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.

    PubMed  Google Scholar 

  49. Forte, A. E., S. Galvan, F. Manieri, F. Rodriguez y Baena, and D. Dini. A composite hydrogel for brain tissue phantoms. Mater. Des. 112:227–238, 2016.

    CAS  Google Scholar 

  50. Franta, I. Elastomers and Rubber Compounding Materials. Amsterdam: Elsevier, p. 607, 1989.

    Google Scholar 

  51. Gauvin, R., Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, and A. Khademhosseini. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33:3824–3834, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gibson, I., D. Rosen, and B. Stucker. Generalized additive manufacturing process chain. In: Additive Manufacturing Technologies, edited by I. Gibson, D. Rosen, and B. Stucker. New York: Springer, 2014, pp. 43–61.

    Google Scholar 

  53. Gilbert, F., C. D. O’Connell, T. Mladenovska, and S. Dodds. Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci. Eng. Ethics 24:73–91, 2018.

    PubMed  Google Scholar 

  54. Gobin, A. S., R. H. Schmedlen, A. T. Tsai, J. L. West, and B. K. Mann. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2002.

    Google Scholar 

  55. Gokuldoss, P. K., S. Kolla, and J. Eckert. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials (Basel) 10:672, 2017.

    Google Scholar 

  56. Gross, B. C., J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–3253, 2014.

    CAS  PubMed  Google Scholar 

  57. Guillotin, B., S. Catros, and F. Guillemot. Laser assisted bio-printing (LAB) of cells and bio-materials based on laser induced forward transfer (LIFT). In: Laser Technology in Biomimetics, edited by V. Schmidt, and M. R. Belegratis. Berlin: Springer, 2013, pp. 193–209.

    Google Scholar 

  58. Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Rémy, L. Bordenave, J. Amédée, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256, 2010.

    CAS  PubMed  Google Scholar 

  59. Harsha Vardhan, G., G. H. Charan, P. S. Reddy, and K. S. Kumar. 3D printing: the dawn of a new era in manufacturing. Int. J. Recent Innov. Trends Comput. Commun. 2(8):2321–2376, 2013.

    Google Scholar 

  60. Ho, H. C. H., I. Gibson, and W. L. Cheung. Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J. Mater. Process. Technol. 89–90:204–210, 1999.

    Google Scholar 

  61. Hocheng, H., H. Y. Tsai, U. U. Jadhav, K. Y. Wang, and T. C. Lin. Laser surface patterning. Mater. Sci. Mater. Eng. 9:75–113, 2014.

    Google Scholar 

  62. Homma, T., N. Kunito, and S. Kamado. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61:644–647, 2009.

    CAS  Google Scholar 

  63. Hospodiuk, M., M. Dey, D. Sosnoski, and I. T. Ozbolat. The bioink: a comprehensive review on bioprintable materials. Biotechnol. Adv. 35:217–239, 2017.

    CAS  PubMed  Google Scholar 

  64. Hull, C. W. U.S. Patent No. 4.575.330. 1986.

  65. Hull, C. On stereolithography. Virtual Phys. Prototyp. 27:177–177, 2012.

    Google Scholar 

  66. Igami, T., Y. Nakamura, T. Hirose, T. Ebata, Y. Yokoyama, G. Sugawara, T. Mizuno, K. Mori, and M. Nagino. Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience. World J. Surg. 38:3163–3166, 2014.

    PubMed  Google Scholar 

  67. Irvine, S. A., and S. S. Venkatraman. Bioprinting and differentiation of stem cells. Molecules 21:1188, 2016.

    PubMed Central  Google Scholar 

  68. Ito, K., K. Furuya, Y. Okano, and L. Hamada. Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron. Commun. Jpn. 84:67–77, 2001.

    Google Scholar 

  69. James, W. J., M. A. Slabbekoorn, W. A. Edgin, and C. K. Hardin. Correction of congenital malar hypoplasia using stereolithography for presurgical planning. J. Oral Maxillofac. Surg. 56:512–517, 1998.

    CAS  PubMed  Google Scholar 

  70. Jammalamadaka, U., and K. Tappa. Recent advances in biomaterials for 3D printing and tissue engineering. J. Funct. Biomater. 9:22, 2018.

    PubMed Central  Google Scholar 

  71. Jardini, A. L., M. A. Larosa, C. A. de Carvalho Zavaglia, L. F. Bernardes, C. S. Lambert, P. Kharmandayan, D. Calderoni, and R. Maciel Filho. Customised titanium implant fabricated in additive manufacturing for craniomaxillofacial surgery. Virtual Phys. Prototyp. 9:115–125, 2014.

    Google Scholar 

  72. Kappanayil, M., N. Rao Koneti, R. R. Kannan, B. P. Kottayil, and K. Kumar. Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: early experience and proof of concept in a resource-limited environment. Ann. Pediatr. Cardiol. 10:117–125, 2017.

    PubMed  PubMed Central  Google Scholar 

  73. Kassab, G. S., and M. S. Sacks. Structure-Based Mechanics of Tissues and Organs. New York: Springer, 2016.

    Google Scholar 

  74. Kempen, K., L. Thijs, J. Van Humbeeck, and J. P. Kruth. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 39:439–446, 2012.

    CAS  Google Scholar 

  75. Kim, K., A. Yeatts, D. Dean, and J. P. Fisher. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng. Part B Rev. 16:523–539, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kirchmajer, D. M., and R. Gorki. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J. Mater. Chesmitry 3:4105–4117, 2015.

    CAS  Google Scholar 

  77. Kodama, H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 60:677–688, 1981.

    Google Scholar 

  78. Kokkinis, D., M. Schaffner, and A. R. Studart. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 6:8643, 2015.

    PubMed  PubMed Central  Google Scholar 

  79. Krauel, L., F. Fenollosa, L. Riaza, M. Pérez, X. Tarrado, A. Morales, J. Gomà, and J. Mora. Use of 3D prototypes for complex surgical oncologic cases. World J. Surg. 40:889–894, 2016.

    PubMed  Google Scholar 

  80. Kresz, N., Z. Bor, T. Smausz, D. B. Chrisey, N. Barna, A. Szabó, L. Kolozsvári, B. Hopp, and A. Nógrádi. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 11:1817–1823, 2006.

    Google Scholar 

  81. Kruth, J. P., L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 149:616–622, 2004.

    CAS  Google Scholar 

  82. Kurenov, S. N., C. Ionita, D. Sammons, and T. L. Demmy. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J. Thorac. Cardiovasc. Surg. 149:973–979.e1, 2015.

    PubMed  Google Scholar 

  83. Kusaka, M., M. Sugimoto, N. Fukami, H. Sasaki, M. Takenaka, T. Anraku, T. Ito, T. Kenmochi, R. Shiroki, and K. Hoshinaga. Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery. Transplant. Proc. 47:596–599, 2015.

    CAS  PubMed  Google Scholar 

  84. Lars, G. W., L. Whal, and Y. Shi-Joon. Magnetic resonance imaging and computer tomography. Paediatr. Cardiol. 18:363–378, 2010.

    Google Scholar 

  85. Leary, M., M. Mazur, J. Elambasseril, M. McMillan, T. Chirent, Y. Sun, M. Qian, M. Easton, and M. Brandt. Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater. Des. 98:344–357, 2016.

    CAS  Google Scholar 

  86. Leibinger, A., A. E. Forte, Z. Tan, M. J. Oldfield, F. Beyrau, D. Dini, and F. Rodriguez y Baena. Soft tissue phantoms for realistic needle insertion: a comparative study. Ann. Biomed. Eng. 44:2442–2452, 2016.

    PubMed  Google Scholar 

  87. Leong, K. F., S. S. Venkatraman, C. K. Chua, N. Sudarmadji, Y. C. F. Boey, H. Y. Yu, L. P. Tan, and W. Y. Yeong. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6:2028–2034, 2009.

    PubMed  Google Scholar 

  88. Lewis, J. A., R. G. Nuzzo, L. Mahadevan, A. Sydney Gladman, and E. A. Matsumoto. Biomimetic 4D printing. Nat. Mater. 15:413–418, 2016.

    PubMed  Google Scholar 

  89. Liao, C. Y., W. J. Wu, C. T. Hsieh, H. C. Yang, C. S. Tseng, and S. Hui Hsu. Water/ice as sprayable sacrificial materials in low-temperature 3D printing for biomedical applications. Mater. Des. 160:624–635, 2018.

    CAS  Google Scholar 

  90. Linares-Alvelais, J. A. R., J. Obedt Figueroa-Cavazos, C. Chuck-Hernandez, H. R. Siller, C. A. Rodríguez, and J. I. Martínez-López. Hydrostatic high-pressure post-processing of specimens fabricated by DLP, SLA, and FDM: an alternative for the sterilization of polymer-based biomedical devices. Materials (Basel) 11:2540, 2018.

    Google Scholar 

  91. Maeda, K., and T. H. C. Childs. Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. J. Mater. Process. Technol. 149:609–615, 2004.

    CAS  Google Scholar 

  92. Manufacturing, A., and F. Format. International Standard ISO/ASTM Specification for Additive Manufacturing File Format (AMF). 2016, 2016.

  93. Mariappan, Y. K., K. J. Glaser, and R. L. Ehman. Magnetic resonance elastography: a review. Clin Anat 23:497–511, 2011.

    Google Scholar 

  94. Marro, A., T. Bandukwala, and W. Mak. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr. Probl. Diagn. Radiol. 45:2–9, 2016.

    PubMed  Google Scholar 

  95. Mehrali, M., H. S. C. Metselaar, H. Yarmand, N. A. A. Osman, N. Adib Kadri, S. Gharehkhani, and S. F. S. Shirazi. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16:033502, 2015.

    PubMed  PubMed Central  Google Scholar 

  96. Mildenberger, P., M. Eichelberg, and E. Martin. Introduction to the DICOM standard. Eur. Radiol. 12:920–927, 2002.

    PubMed  Google Scholar 

  97. Mohebi, M. M., and J. R. Evans. A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J. Comb. Chem. 4:267–274, 2002.

    CAS  PubMed  Google Scholar 

  98. Morvan, S. M. Heterogeneous solids: possible representation schemes. Proc. Solid Free. pp. 187–198, 1999. http://utwired.utexas.edu/lff/symposium/proceedingsArchive/pubs/Manuscripts/1999/1999-022-Morvan.pdf.

  99. Mueller, J., K. Shea, and C. Daraio. Mechanical properties of parts fabricated with inkjet 3D printing through efficient experimental design. Mater. Des. 86:902–912, 2015.

    Google Scholar 

  100. Muguruza Blanco, A., L. Krauel, and F. Fenollosa Artés. Development of a patients-specific 3D-printed preoperative planning and training tool, with functionalized internal surfaces, for complex oncologic cases. Rapid Prototyp. J. 25:363–377, 2019.

    Google Scholar 

  101. Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    CAS  PubMed  Google Scholar 

  102. Naahidi, S., M. Jafari, M. Logan, Y. Wang, Y. Yuan, H. Bae, and P. Chen. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 35:530–544, 2017.

    CAS  PubMed  Google Scholar 

  103. Nam, D., R. L. Barrack, and H. G. Potter. What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems? Clin. Orthop. Relat. Res. 472:3665–3673, 2014.

    PubMed  PubMed Central  Google Scholar 

  104. Nizam, A., R. Gopal, N. L. Naing, A. B. Hakim, and A. R. Samsudin. Dimensional accuracy of the skull models produced by rapid prototyping technology using stereolithography apparatus. Arch. Orofac. Sci. 1:60–66, 2006.

    Google Scholar 

  105. Noor, N., A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6:1900344, 2019.

    Google Scholar 

  106. Nune, K. C., S. Li, and R. D. K. Misra. Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects. Sci. China Mater. 61:1–20, 2017.

    Google Scholar 

  107. Ovsianikov, A., S. Lin, K. Hölzl, L. Tytgat, S. Van Vlierberghe, and L. Gu. Bioink properties before, during and after 3D bioprinting. Biofabrication 8:032002, 2016.

    PubMed  Google Scholar 

  108. Oyen, M. L. Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59:44–59, 2014.

    CAS  Google Scholar 

  109. Ozbolat, I. T., and M. Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343, 2016.

    CAS  PubMed  Google Scholar 

  110. Ozbolat, I. T., and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699, 2013.

    PubMed  Google Scholar 

  111. Perez, M. Sterilization of FDM-manufactured parts Mireya 285–296, 2012

  112. Perkins, J. D. Techniques to ensure adequate portal flow in the presence of splenorenal shunts. Liver Transplant. 13:767–768, 2007.

    Google Scholar 

  113. Polonio-Alcalá, E., M. Rabionet, X. Gallardo, D. Angelats, J. Ciurana, S. Ruiz-Martínez, and T. Puig. PLA electrospun scaffolds for three-dimensional triple-negative breast cancer cell culture. Polymers (Basel) 11:916, 2019.

    PubMed Central  Google Scholar 

  114. Polonio-Alcalá, E., M. Rabionet, A. J. Guerra, M. Yeste, J. Ciurana, and T. Puig. Screening of additive manufactured scaffolds designs for triple negative breast cancer 3D cell culture and stem-like expansion. Int. J. Mol. Sci. 19:3148, 2018.

    PubMed Central  Google Scholar 

  115. Pykett, I. L., J. H. Newhouse, F. S. Buonanno, T. J. Brady, M. R. Goldman, J. P. Kistler, and G. M. Pohost. Principles of nuclear magnetic resonance imaging. Radiology 143:157–168, 1982.

    CAS  PubMed  Google Scholar 

  116. Qi, L., J. C. Kash, V. G. Dugan, B. W. Jagger, Y. Lau, E. C. Crouch, K. L. Hartshorn, and J. K. Taubenberger. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34:331–339, 2013.

    Google Scholar 

  117. Remmers, R., D. Cook, and V. Gervasi. Custom, integrated, pneumatic, rotary actuator for and active ankle-foot orthosis. Solid Free. Fabr. Symp. 816–827, 2010. http://sffsymposium.engr.utexas.edu/Manuscripts/2010/2010-69-Remers.pdf.

  118. Rimann, M., E. Bono, H. Annaheim, M. Bleisch, and U. Graf-Hausner. Standardized 3D bioprinting of soft tissue models with human primary cells. J. Lab. Autom. 21:496–509, 2016.

    CAS  PubMed  Google Scholar 

  119. Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Sekhar, A., M. R. Sun, and B. Siewert. A tissue phantom model for training residents in ultrasound-guided liver biopsy. Acad. Radiol. 21:902–908, 2014.

    PubMed  Google Scholar 

  121. Selvamurugan, N., K. Ramasamy, A. Moorthi, M. Swetha, N. Srinivasan, and K. Sahithi. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 47:1–4, 2010.

    PubMed  Google Scholar 

  122. Semelka, R. C., D. M. Armao, J. Elias, and W. Huda. Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J. Magn. Reson. Imaging 25:900–909, 2007.

    PubMed  Google Scholar 

  123. Shaheen, E., A. Alhelwani, E. Van De Casteele, C. Politis, and R. Jacobs. Evaluation of dimensional changes of 3D printed models after sterilization: a pilot study. Open Dent. J. 12:72–79, 2018.

    PubMed  PubMed Central  Google Scholar 

  124. Shamoo, A. E., and D. B. Resnik. Responsible Conduct of Research. Oxford: Oxford University Press, 2009.

    Google Scholar 

  125. Shestopaloff, Y. K., and I. F. Sbalzarini. A method for modeling growth of organs and transplants based on the general growth law: application to the liver in dogs and humans. PLoS ONE 9:e99275, 2014.

    PubMed  PubMed Central  Google Scholar 

  126. Shiraishi, I., M. Yamagishi, K. Hamaoka, M. Fukuzawa, and T. Yagihara. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardio Thoracic Surg. 37:302–306, 2010.

    Google Scholar 

  127. Simpkins, M. W., R. L. Stewart, R. L. Parkhill, A. L. Stone, A. M. Kachurin, S. K. Williams, C. M. Smith, and W. L. Warren. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 10:1566–1576, 2004.

    PubMed  Google Scholar 

  128. Singh, D., and D. Thomas. Advances in medical polymer technology towards the panacea of complex 3D tissue and organ manufacture. Am. J. Surg. 217:807–808, 2018.

    PubMed  Google Scholar 

  129. Smith, R. J., M. Hirsch, R. Patel, W. Li, A. T. Clare, and S. D. Sharples. Spatially resolved acoustic spectroscopy for selective laser melting. J. Mater. Process. Technol. 236:93–102, 2016.

    CAS  Google Scholar 

  130. Sprawls, P. Physical Principles of Medical Imaging Online. Madison: Medical Physics Publishing, 1985.

    Google Scholar 

  131. Sugiyama, T., S. Lama, L. S. Gan, Y. Maddahi, K. Zareinia, and G. R. Sutherland. Forces of tool-tissue interaction to assess surgical skill level. JAMA Surg. 153:234–242, 2018.

    PubMed  Google Scholar 

  132. Takahashi, K., and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676, 2006.

    CAS  Google Scholar 

  133. Tam, M. D., S. D. Laycock, D. G. Bell, and A. Chojnowski. 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J. Radiol. Case Rep. 6:31–37, 2012.

    PubMed  PubMed Central  Google Scholar 

  134. Tan, Z., D. Dini, F. Rodriguez y Baena, and A. E. Forte. Composite hydrogel: a high fidelity soft tissue mimic for surgery. Mater. Des. 160:886–894, 2018.

    CAS  Google Scholar 

  135. Tan, C., K. Zhou, W. Ma, B. Attard, P. Zhang, and T. Kuang. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci. Technol. Adv. Mater. 19:370–380, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Tang, B., G. B. Hanna, and A. Cuschieri. Analysis of errors enacted by surgical trainees during skills training courses. Surgery 138:14–20, 2005.

    CAS  PubMed  Google Scholar 

  137. Thomson, J. A. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147, 1998.

    CAS  Google Scholar 

  138. Tibbits, S. 4D printing: Multi-material shape change. Archit. Des. 84:116–121, 2014.

    Google Scholar 

  139. Tseng, M. L., P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai. Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique. Laser Photonics Rev. 6:702–707, 2012.

    Google Scholar 

  140. van de Belt, T. H., H. Nijmeijer, D. Grim, L. J. Engelen, R. Vreeken, M. M. van Gelder, and M. ter Laan. Patient-specific actual-size three-dimensional printed models for patient education in glioma treatment: first experiences. World Neurosurg. 117:e99–e105, 2018.

    PubMed  Google Scholar 

  141. Vaneker, T. H. J. The role of design for additive manufacturing in the successful economical introduction of AM. Procedia CIRP 60:181–186, 2017.

    Google Scholar 

  142. Vermeulen, N., G. Haddow, T. Seymour, A. Faulkner-Jones, and W. Shu. 3D bioprint me: A socioethical view of bioprinting human organs and tissues. J. Med. Ethics 43:618–624, 2017.

    PubMed  PubMed Central  Google Scholar 

  143. Vijayavenkataraman, S., W. C. Yan, W. F. Lu, C. H. Wang, and J. Y. H. Fuh. 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev. 132:296–332, 2018.

    CAS  PubMed  Google Scholar 

  144. Waldman, S. D. Pain Review E-Book. Amsterdam: Elsevier Health Sciences, 2016.

    Google Scholar 

  145. Wang, P., H. C. Li, K. G. Prashanth, J. Eckert, and S. Scudino. Selective laser melting of Al–Zn–Mg–Cu: Heat treatment, microstructure and mechanical properties. J. Alloys Compd. 707:287–290, 2017.

    CAS  Google Scholar 

  146. Warnke, P. H., T. Douglas, P. Wollny, E. Sherry, M. Steiner, S. Galonska, S. T. Becker, I. N. Springer, J. Wiltfang, and S. Sivananthan. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng. Part C Methods 15:115–124, 2008.

    Google Scholar 

  147. Watson, R. A. A low-cost surgical application of additive fabrication. J. Surg. Educ. 71:14–17, 2014.

    PubMed  Google Scholar 

  148. Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2:11–18, 2002.

    CAS  PubMed  Google Scholar 

  149. Winder, J. A., and R. J. Bibb. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 63:245–248, 2005.

    Google Scholar 

  150. Witowski, J. S., M. Pędziwiatr, P. Major, and A. Budzyński. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int. J. Comput. Assist. Radiol. Surg. 12:2047–2054, 2017.

    PubMed  PubMed Central  Google Scholar 

  151. Wohlers, T. Rapid prototyping & tooling state of the industry: 1998 worldwide progress report. Mater. Technol. 13:174–176, 2016.

    Google Scholar 

  152. Wong, K. V., and A. Hernandez. A review of additive manufacturing. ISRN Mech. Eng. 1–10:2012, 2012.

    Google Scholar 

  153. Wurm, G., B. Tomancok, P. Pogady, K. Holl, and J. Trenkler. Cerebrovascular stereolithographic biomodeling for aneurysm surgery: Technical note. J. Neurosurg. 100:139–145, 2004.

    PubMed  Google Scholar 

  154. Xu, T., J. Jin, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99, 2005.

    PubMed  Google Scholar 

  155. Xu, T., H. Kincaid, A. Atala, and J. J. Yoo. High-throughput production of single-cell microparticles using an inkjet printing technology. J. Manuf. Sci. Eng. 130:021017, 2008.

    Google Scholar 

  156. Yang, Y., J. Bin Lu, Z. Y. Luo, and D. Wang. Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting. Rapid Prototyp. J. 18:482–489, 2012.

    Google Scholar 

  157. Yang, D. H., J. W. Kang, N. Kim, J. K. Song, J. W. Lee, and T. H. Lim. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation 132:300–301, 2015.

    PubMed  Google Scholar 

  158. Yang, Y., L. Li, and J. Zhao. Mechanical property modeling of photosensitive liquid resin in stereolithography additive manufacturing: Bridging degree of cure with tensile strength and hardness. Mater. Des. 162:418–428, 2019.

    CAS  Google Scholar 

  159. Yang, H., S. Yang, X. Chi, and J. R. Evans. Fine ceramic lattices prepared by extrusion freeforming. J. Biomed. Mater. Res. Part B 79:116–121, 2006.

    Google Scholar 

  160. Yeo, M. G., J. S. Lee, W. Chun, and G. H. Kim. An innovative collagen-based cell-printing method for obtaining human adipose stem cell-laden structures consisting of core-sheath structures for tissue engineering. Biomacromolecules 17:1365–1375, 2016.

    CAS  PubMed  Google Scholar 

  161. Yu, Y., and I. T. Ozbolat. Tissue strands as “bioink” for scale-up organ printing. 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC 2014 pp. 1428–1431, 2014.https://doi.org/10.1109/embc.2014.6943868.

  162. Zein, N. N., I. A. Hanouneh, P. D. Bishop, M. Samaan, B. Eghtesad, C. Quintini, C. Miller, L. Yerian, and R. Klatte. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplant. 19(12):1304–1310, 2013.

    Google Scholar 

  163. Zhao, Y., Y. Li, S. Mao, W. Sun, and R. Yao. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7:45002, 2015.

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tejo-Otero.

Additional information

Associate Editor Emmanuel Opara oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tejo-Otero, A., Buj-Corral, I. & Fenollosa-Artés, F. 3D Printing in Medicine for Preoperative Surgical Planning: A Review. Ann Biomed Eng 48, 536–555 (2020). https://doi.org/10.1007/s10439-019-02411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02411-0

Keywords

Navigation