Abstract
Compared to two-dimensional cell cultures, three-dimensional ones potentially allow recreating natural tissue environments with higher accuracy. The three-dimensional approach is being investigated in the field of tissue engineering targeting the reconstruction of various tissues, among which skeletal muscle. Skeletal muscle is an electroactive tissue which strongly relies upon interactions with the extracellular matrix for internal organization and mechanical function. Studying the optimization of myogenesis in vitro implies focusing on appropriate biomimetic stimuli, as biochemical and electrical ones. Here we present a three-dimensional polyurethane-based soft porous scaffold (porosity ~ 86%) with a Young’s modulus in wet conditions close to the one of natural skeletal muscle tissue (~ 9 kPa). To study the effect of external stimuli on muscle cells, we functionalized the scaffold with extracellular matrix components (laminin and fibronectin) and observed an increase in myoblast proliferation over three days. Furthermore, the combination between laminin coating and electrical stimulation resulted in more spread and thicker myotubes compared to non-stimulated samples and samples receiving the single (non-combined) inputs. These results pave the way to the development of mature muscle tissue within three-dimensional soft scaffolds, through the combination of biochemical and electrical stimuli.
This is a preview of subscription content, access via your institution.








Abbreviations
- 3D:
-
Three-dimensional
- DMEM:
-
Dulbecco’s Modified Eagle’s Medium
- DMSO:
-
Dimethylsulfoxide
- ECM:
-
Extracellular matrix
- ES:
-
Electrical stimulation
- EtOH:
-
Ethanol
- FBS:
-
Fetal bovine serum
- FN:
-
Fibronectin
- HMDI:
-
Hexamethylene diisocyanate
- IQR:
-
Interquartile range
- LMN:
-
Laminin
- MDM:
-
Myoblast differentiation medium
- MGM:
-
Myoblast growth medium
- MSM:
-
Myoblast seeding medium
- PBS:
-
Phosphate buffered saline
- PEG6K:
-
Polyethylene glycol 6000 g/mol
- Pt:
-
Platinum
- PU:
-
Polyurethane
- SEM:
-
Scanning electron microscopy
- SM:
-
Skeletal muscle
- SMTE:
-
Skeletal muscle tissue engineering
- TRITC:
-
Tetramethylrhodamine
References
Bian, W., and N. Bursac. Tissue engineering of functional skeletal muscle: challenges and recent advances. IEEE Eng. Med. Biol. Mag. 27:109–113, 2008.
Boonen, K. J. M., D. W. J. van der Schaft, F. P. T. Baaijens, and M. J. Post. Interaction between electrical stimulation, protein coating and matrix elasticity: a complex effect on muscle fibre maturation. J. Tissue Eng. Regen. Med. 5:60–68, 2011.
Candiani, G., S. A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander, F. M. Montevecchi, and S. Mantero. Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. J. Appl. Biomater. Funct. Mater. 8:68–75, 2018.
Cerino, G., E. Gaudiello, T. Grussenmeyer, L. Melly, D. Massai, A. Banfi, I. Martin, F. Eckstein, M. Grapow, and A. Marsano. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors. Biotechnol. Bioeng. 113:226–236, 2016.
Chal, J., and O. Pourquié. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144:2104–2122, 2017.
Chen, J., R. Dong, J. Ge, B. Guo, and P. X. Ma. Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering. ACS Appl. Mater. Interfaces 7:28273–28285, 2015.
Ciardelli, G., A. Rechichi, S. Sartori, M. D’Acunto, A. Caporale, E. Peggion, G. Vozzi, and P. Giusti. Bioactive polyurethanes in clinical applications. Polym. Adv. Technol. 17:786–789, 2006.
Discher, D. E., P. Janmey, and Y.-L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.
Duffy, R. M., Y. Sun, and A. W. Feinberg. Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle. Ann. Biomed. Eng. 44:2076–2089, 2016.
Engler, A. J., L. Bacakova, C. Newman, A. Hategan, M. A. Griffin, and D. E. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.
Engler, A. J., M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness. J. Cell Biol. 166:877–887, 2004.
Engler, A. J., L. Richert, J. Y. Wong, C. Picart, and D. E. Discher. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570:142–154, 2004.
Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.
Ganji, Y., Q. Li, E. S. Quabius, M. Böttner, C. Selhuber-Unkel, and M. Kasra. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Mater. Sci. Eng. C 59:10–18, 2016.
Garg, K., M. Marcinczyk, N. Ziemkiewicz, and K. Garg. Laminin enriched scaffolds for tissue engineering applications. Adv. Tissue Eng. Regen. Med. Open Access 2:194–200, 2017.
Gerges, I., M. Tamplenizza, F. Martello, C. Recordati, C. Martelli, L. Ottobrini, M. Tamplenizza, S. A. Guelcher, A. Tocchio, and C. Lenardi. Exploring the potential of polyurethane-based soft foam as cell-free scaffold for soft tissue regeneration. Acta Biomater. 73:141–153, 2018.
Gillies, A. R., and R. L. Lieber. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331, 2011.
Hiemer, B., M. Krogull, T. Bender, J. Ziebart, S. Krueger, R. Bader, and A. Jonitz-Heincke. Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia. Mol. Med. Rep. 18:2133–2141, 2018.
Ikeda, K., A. Ito, M. Sato, Y. Kawabe, and M. Kamihira. Improved contractile force generation of tissue-engineered skeletal muscle constructs by IGF-I and Bcl-2 gene transfer with electrical pulse stimulation. Regen. Ther. 3:38–44, 2016.
Ito, A., Y. Yamamoto, M. Sato, K. Ikeda, M. Yamamoto, H. Fujita, E. Nagamori, Y. Kawabe, and M. Kamihira. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation. Sci. Rep. 4:4781, 2014.
Jana, S., S. K. L. Levengood, and M. Zhang. Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater. 28:10588–10612, 2016.
Karande, T. S., J. L. Ong, and C. M. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32:1728–1743, 2004.
Khodabukus, A., L. Madden, N. K. Prabhu, T. R. Koves, C. P. Jackman, D. M. Muoio, and N. Bursac. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 198:259–269, 2019.
Kleinman, H. K., D. Philp, and M. P. Hoffman. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 14:526–532, 2003.
Koch, M. A., E. J. Vrij, E. Engel, J. A. Planell, and D. Lacroix. Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J. Biomed. Mater. Res. Part A 95A:1011–1018, 2010.
Kostrominova, T. Y., and M. L. Tanzer. Temporal and spatial appearance of α-dystroglycan in differentiated mouse myoblasts in culture. J. Cell. Biochem. 58:527–534, 1995.
Krueger, E., A. N. Chang, D. Brown, J. Eixenberger, R. Brown, S. Rastegar, K. M. Yocham, K. D. Cantley, and D. Estrada. Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater. Sci. Eng. 2:1234–1241, 2016.
Lan, M. A., C. A. Gersbach, K. E. Michael, B. G. Keselowsky, and A. J. García. Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 26:4523–4531, 2005.
Levenberg, S., J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. Van Blitterswijk, R. C. Mulligan, P. A. D’Amore, and R. Langer. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23:879–884, 2005.
Liao, I.-C., J. B. Liu, N. Bursac, and K. W. Leong. Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers. Cell. Mol. Bioeng. 1:133, 2008.
Maidhof, R., A. Marsano, E. J. Lee, and G. Vunjak-Novakovic. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol. Prog. 26:565–572, 2010.
Ostrovidov, S., V. Hosseini, S. Ahadian, T. Fujie, S. P. Parthiban, M. Ramalingam, H. Bae, H. Kaji, and A. Khademhosseini. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng. Part B 20:403–436, 2014.
Park, H., R. Bhalla, R. Saigal, M. Radisic, N. Watson, R. Langer, and G. Vunjak-Novakovic. Effects of electrical stimulation in C2C12 muscle constructs. J. Tissue Eng. Regen. Med. 2:279–287, 2008.
Riboldi, S. A., N. Sadr, L. Pigini, P. Neuenschwander, M. Simonet, P. Mognol, M. Sampaolesi, G. Cossu, and S. Mantero. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. J. Biomed. Mater. Res. A 84:1094–1101, 2008.
Ricotti, L., B. Trimmer, A. W. Feinberg, R. Raman, K. K. Parker, R. Bashir, M. Sitti, S. Martel, P. Dario, and A. Menciassi. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2:eaaq0495, 2017.
Ross, J. J., M. J. Duxson, and A. J. Harris. Neural determination of muscle fibre numbers in embryonic rat lumbrical muscles. Development 100:395–409, 1987.
Santamaría, V. A., H. Deplaine, D. Mariggió, A. R. Villanueva-Molines, J. M. García-Aznar, J. L. G. Ribelles, M. Doblaré, G. G. Ferrer, and I. Ochoa. Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. J. Non-Cryst. Solids 358:3141–3149, 2012.
Siepe, M., M.-N. Giraud, E. Liljensten, U. Nydegger, P. Menasche, T. Carrel, and H. T. Tevaearai. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif. Organs 31:425–433, 2007.
Sin, D., X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan, and T. Friis. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater. Sci. Eng. C 30:78–85, 2010.
Song, B., Y. Gu, J. Pu, B. Reid, Z. Zhao, and M. Zhao. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat. Protoc. 2:1479–1489, 2007.
Tandon, N., A. Marsano, R. Maidhof, L. Wan, H. Park, and G. Vunjak-Novakovic. Optimization of electrical stimulation parameters for cardiac tissue engineering. J. Tissue Eng. Regen. Med. 5:e115–e125, 2011.
Tuomisto, H. L., and M. J. Teixeira de Mattos. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45:6117–6123, 2011.
Vandenburgh, H. High-content drug screening with engineered musculoskeletal tissues. Tissue Eng. Part B 16:55–64, 2010.
Vannozzi, L., L. Ricotti, T. Santaniello, T. Terencio, R. Oropesa-Nunez, C. Canale, F. Borghi, A. Menciassi, C. Lenardi, and I. Gerges. 3D porous polyurethanes featured by different mechanical properties: characterization and interaction with skeletal muscle cells. J. Mech. Behav. Biomed. Mater. 75:147–159, 2017.
Varley, M. C., S. Neelakantan, T. W. Clyne, J. Dean, R. A. Brooks, and A. E. Markaki. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater. 33:166–175, 2016.
Wang, L., Y. Wu, B. Guo, and P. X. Ma. Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9:9167–9179, 2015.
Yuvarani, I., S. Senthilkumar, J. Venkatesan, S.-K. Kim, A. A. Al-Kheraif, S. Anil, and P. N. Sudha. Chitosan modified alginate-polyurethane scaffold for skeletal muscle tissue engineering. J. Biomater. Tissue Eng. 5:665–672, 2015.
Zdrahala, R. J., and I. J. Zdrahala. Biomedical applications of polyurethanes: a review of past promises, present pealities, and a vibrant future. J. Biomater. Appl. 14:67–90, 1999.
Zhang, M., and B. Guo. Electroactive 3D scaffolds based on silk fibroin and water-borne polyaniline for skeletal muscle tissue engineering. Macromol. Biosci. 17:1700147, 2017.
Zhao, X., R. Dong, B. Guo, and P. X. Ma. Dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability, and enhanced C2C12 myogenic differentiation. ACS Appl. Mater. Interfaces 9:29595–29611, 2017.
Acknowledgments
The authors would like to thank Federica Elliot for English language editing and review.
Conflict of interest
The authors declare no competing financial interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Smadar Cohen oversaw the review of this article.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Iberite, F., Gerges, I., Vannozzi, L. et al. Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold. Ann Biomed Eng 48, 734–746 (2020). https://doi.org/10.1007/s10439-019-02397-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-019-02397-9
Keywords
- Three-dimensional scaffold
- Biophysical stimulation
- Skeletal muscle
- Tissue engineering
- Polyurethane scaffold