Skip to main content

Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold

Abstract

Compared to two-dimensional cell cultures, three-dimensional ones potentially allow recreating natural tissue environments with higher accuracy. The three-dimensional approach is being investigated in the field of tissue engineering targeting the reconstruction of various tissues, among which skeletal muscle. Skeletal muscle is an electroactive tissue which strongly relies upon interactions with the extracellular matrix for internal organization and mechanical function. Studying the optimization of myogenesis in vitro implies focusing on appropriate biomimetic stimuli, as biochemical and electrical ones. Here we present a three-dimensional polyurethane-based soft porous scaffold (porosity ~ 86%) with a Young’s modulus in wet conditions close to the one of natural skeletal muscle tissue (~ 9 kPa). To study the effect of external stimuli on muscle cells, we functionalized the scaffold with extracellular matrix components (laminin and fibronectin) and observed an increase in myoblast proliferation over three days. Furthermore, the combination between laminin coating and electrical stimulation resulted in more spread and thicker myotubes compared to non-stimulated samples and samples receiving the single (non-combined) inputs. These results pave the way to the development of mature muscle tissue within three-dimensional soft scaffolds, through the combination of biochemical and electrical stimuli.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Abbreviations

3D:

Three-dimensional

DMEM:

Dulbecco’s Modified Eagle’s Medium

DMSO:

Dimethylsulfoxide

ECM:

Extracellular matrix

ES:

Electrical stimulation

EtOH:

Ethanol

FBS:

Fetal bovine serum

FN:

Fibronectin

HMDI:

Hexamethylene diisocyanate

IQR:

Interquartile range

LMN:

Laminin

MDM:

Myoblast differentiation medium

MGM:

Myoblast growth medium

MSM:

Myoblast seeding medium

PBS:

Phosphate buffered saline

PEG6K:

Polyethylene glycol 6000 g/mol

Pt:

Platinum

PU:

Polyurethane

SEM:

Scanning electron microscopy

SM:

Skeletal muscle

SMTE:

Skeletal muscle tissue engineering

TRITC:

Tetramethylrhodamine

References

  1. Bian, W., and N. Bursac. Tissue engineering of functional skeletal muscle: challenges and recent advances. IEEE Eng. Med. Biol. Mag. 27:109–113, 2008.

    PubMed  PubMed Central  Google Scholar 

  2. Boonen, K. J. M., D. W. J. van der Schaft, F. P. T. Baaijens, and M. J. Post. Interaction between electrical stimulation, protein coating and matrix elasticity: a complex effect on muscle fibre maturation. J. Tissue Eng. Regen. Med. 5:60–68, 2011.

    CAS  PubMed  Google Scholar 

  3. Candiani, G., S. A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander, F. M. Montevecchi, and S. Mantero. Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. J. Appl. Biomater. Funct. Mater. 8:68–75, 2018.

    Google Scholar 

  4. Cerino, G., E. Gaudiello, T. Grussenmeyer, L. Melly, D. Massai, A. Banfi, I. Martin, F. Eckstein, M. Grapow, and A. Marsano. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors. Biotechnol. Bioeng. 113:226–236, 2016.

    CAS  PubMed  Google Scholar 

  5. Chal, J., and O. Pourquié. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144:2104–2122, 2017.

    CAS  PubMed  Google Scholar 

  6. Chen, J., R. Dong, J. Ge, B. Guo, and P. X. Ma. Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering. ACS Appl. Mater. Interfaces 7:28273–28285, 2015.

    CAS  PubMed  Google Scholar 

  7. Ciardelli, G., A. Rechichi, S. Sartori, M. D’Acunto, A. Caporale, E. Peggion, G. Vozzi, and P. Giusti. Bioactive polyurethanes in clinical applications. Polym. Adv. Technol. 17:786–789, 2006.

    CAS  Google Scholar 

  8. Discher, D. E., P. Janmey, and Y.-L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.

    CAS  PubMed  Google Scholar 

  9. Duffy, R. M., Y. Sun, and A. W. Feinberg. Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle. Ann. Biomed. Eng. 44:2076–2089, 2016.

    PubMed  PubMed Central  Google Scholar 

  10. Engler, A. J., L. Bacakova, C. Newman, A. Hategan, M. A. Griffin, and D. E. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Engler, A. J., M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness. J. Cell Biol. 166:877–887, 2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Engler, A. J., L. Richert, J. Y. Wong, C. Picart, and D. E. Discher. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570:142–154, 2004.

    CAS  Google Scholar 

  13. Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.

    CAS  PubMed  Google Scholar 

  14. Ganji, Y., Q. Li, E. S. Quabius, M. Böttner, C. Selhuber-Unkel, and M. Kasra. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Mater. Sci. Eng. C 59:10–18, 2016.

    CAS  Google Scholar 

  15. Garg, K., M. Marcinczyk, N. Ziemkiewicz, and K. Garg. Laminin enriched scaffolds for tissue engineering applications. Adv. Tissue Eng. Regen. Med. Open Access 2:194–200, 2017.

    Google Scholar 

  16. Gerges, I., M. Tamplenizza, F. Martello, C. Recordati, C. Martelli, L. Ottobrini, M. Tamplenizza, S. A. Guelcher, A. Tocchio, and C. Lenardi. Exploring the potential of polyurethane-based soft foam as cell-free scaffold for soft tissue regeneration. Acta Biomater. 73:141–153, 2018.

    CAS  PubMed  Google Scholar 

  17. Gillies, A. R., and R. L. Lieber. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hiemer, B., M. Krogull, T. Bender, J. Ziebart, S. Krueger, R. Bader, and A. Jonitz-Heincke. Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia. Mol. Med. Rep. 18:2133–2141, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikeda, K., A. Ito, M. Sato, Y. Kawabe, and M. Kamihira. Improved contractile force generation of tissue-engineered skeletal muscle constructs by IGF-I and Bcl-2 gene transfer with electrical pulse stimulation. Regen. Ther. 3:38–44, 2016.

    PubMed  PubMed Central  Google Scholar 

  20. Ito, A., Y. Yamamoto, M. Sato, K. Ikeda, M. Yamamoto, H. Fujita, E. Nagamori, Y. Kawabe, and M. Kamihira. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation. Sci. Rep. 4:4781, 2014.

    PubMed  PubMed Central  Google Scholar 

  21. Jana, S., S. K. L. Levengood, and M. Zhang. Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater. 28:10588–10612, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Karande, T. S., J. L. Ong, and C. M. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32:1728–1743, 2004.

    PubMed  Google Scholar 

  23. Khodabukus, A., L. Madden, N. K. Prabhu, T. R. Koves, C. P. Jackman, D. M. Muoio, and N. Bursac. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 198:259–269, 2019.

    CAS  PubMed  Google Scholar 

  24. Kleinman, H. K., D. Philp, and M. P. Hoffman. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 14:526–532, 2003.

    CAS  PubMed  Google Scholar 

  25. Koch, M. A., E. J. Vrij, E. Engel, J. A. Planell, and D. Lacroix. Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J. Biomed. Mater. Res. Part A 95A:1011–1018, 2010.

    CAS  Google Scholar 

  26. Kostrominova, T. Y., and M. L. Tanzer. Temporal and spatial appearance of α-dystroglycan in differentiated mouse myoblasts in culture. J. Cell. Biochem. 58:527–534, 1995.

    CAS  PubMed  Google Scholar 

  27. Krueger, E., A. N. Chang, D. Brown, J. Eixenberger, R. Brown, S. Rastegar, K. M. Yocham, K. D. Cantley, and D. Estrada. Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater. Sci. Eng. 2:1234–1241, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lan, M. A., C. A. Gersbach, K. E. Michael, B. G. Keselowsky, and A. J. García. Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 26:4523–4531, 2005.

    CAS  PubMed  Google Scholar 

  29. Levenberg, S., J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. Van Blitterswijk, R. C. Mulligan, P. A. D’Amore, and R. Langer. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23:879–884, 2005.

    CAS  PubMed  Google Scholar 

  30. Liao, I.-C., J. B. Liu, N. Bursac, and K. W. Leong. Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers. Cell. Mol. Bioeng. 1:133, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Maidhof, R., A. Marsano, E. J. Lee, and G. Vunjak-Novakovic. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol. Prog. 26:565–572, 2010.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ostrovidov, S., V. Hosseini, S. Ahadian, T. Fujie, S. P. Parthiban, M. Ramalingam, H. Bae, H. Kaji, and A. Khademhosseini. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng. Part B 20:403–436, 2014.

    Google Scholar 

  33. Park, H., R. Bhalla, R. Saigal, M. Radisic, N. Watson, R. Langer, and G. Vunjak-Novakovic. Effects of electrical stimulation in C2C12 muscle constructs. J. Tissue Eng. Regen. Med. 2:279–287, 2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Riboldi, S. A., N. Sadr, L. Pigini, P. Neuenschwander, M. Simonet, P. Mognol, M. Sampaolesi, G. Cossu, and S. Mantero. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. J. Biomed. Mater. Res. A 84:1094–1101, 2008.

    CAS  PubMed  Google Scholar 

  35. Ricotti, L., B. Trimmer, A. W. Feinberg, R. Raman, K. K. Parker, R. Bashir, M. Sitti, S. Martel, P. Dario, and A. Menciassi. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2:eaaq0495, 2017.

    Google Scholar 

  36. Ross, J. J., M. J. Duxson, and A. J. Harris. Neural determination of muscle fibre numbers in embryonic rat lumbrical muscles. Development 100:395–409, 1987.

    CAS  PubMed  Google Scholar 

  37. Santamaría, V. A., H. Deplaine, D. Mariggió, A. R. Villanueva-Molines, J. M. García-Aznar, J. L. G. Ribelles, M. Doblaré, G. G. Ferrer, and I. Ochoa. Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. J. Non-Cryst. Solids 358:3141–3149, 2012.

    Google Scholar 

  38. Siepe, M., M.-N. Giraud, E. Liljensten, U. Nydegger, P. Menasche, T. Carrel, and H. T. Tevaearai. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif. Organs 31:425–433, 2007.

    CAS  PubMed  Google Scholar 

  39. Sin, D., X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan, and T. Friis. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater. Sci. Eng. C 30:78–85, 2010.

    CAS  Google Scholar 

  40. Song, B., Y. Gu, J. Pu, B. Reid, Z. Zhao, and M. Zhao. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat. Protoc. 2:1479–1489, 2007.

    CAS  PubMed  Google Scholar 

  41. Tandon, N., A. Marsano, R. Maidhof, L. Wan, H. Park, and G. Vunjak-Novakovic. Optimization of electrical stimulation parameters for cardiac tissue engineering. J. Tissue Eng. Regen. Med. 5:e115–e125, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tuomisto, H. L., and M. J. Teixeira de Mattos. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45:6117–6123, 2011.

    CAS  PubMed  Google Scholar 

  43. Vandenburgh, H. High-content drug screening with engineered musculoskeletal tissues. Tissue Eng. Part B 16:55–64, 2010.

    CAS  Google Scholar 

  44. Vannozzi, L., L. Ricotti, T. Santaniello, T. Terencio, R. Oropesa-Nunez, C. Canale, F. Borghi, A. Menciassi, C. Lenardi, and I. Gerges. 3D porous polyurethanes featured by different mechanical properties: characterization and interaction with skeletal muscle cells. J. Mech. Behav. Biomed. Mater. 75:147–159, 2017.

    CAS  PubMed  Google Scholar 

  45. Varley, M. C., S. Neelakantan, T. W. Clyne, J. Dean, R. A. Brooks, and A. E. Markaki. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater. 33:166–175, 2016.

    CAS  PubMed  Google Scholar 

  46. Wang, L., Y. Wu, B. Guo, and P. X. Ma. Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9:9167–9179, 2015.

    CAS  PubMed  Google Scholar 

  47. Yuvarani, I., S. Senthilkumar, J. Venkatesan, S.-K. Kim, A. A. Al-Kheraif, S. Anil, and P. N. Sudha. Chitosan modified alginate-polyurethane scaffold for skeletal muscle tissue engineering. J. Biomater. Tissue Eng. 5:665–672, 2015.

    Google Scholar 

  48. Zdrahala, R. J., and I. J. Zdrahala. Biomedical applications of polyurethanes: a review of past promises, present pealities, and a vibrant future. J. Biomater. Appl. 14:67–90, 1999.

    CAS  PubMed  Google Scholar 

  49. Zhang, M., and B. Guo. Electroactive 3D scaffolds based on silk fibroin and water-borne polyaniline for skeletal muscle tissue engineering. Macromol. Biosci. 17:1700147, 2017.

    Google Scholar 

  50. Zhao, X., R. Dong, B. Guo, and P. X. Ma. Dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability, and enhanced C2C12 myogenic differentiation. ACS Appl. Mater. Interfaces 9:29595–29611, 2017.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Federica Elliot for English language editing and review.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federica Iberite.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1619 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iberite, F., Gerges, I., Vannozzi, L. et al. Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold. Ann Biomed Eng 48, 734–746 (2020). https://doi.org/10.1007/s10439-019-02397-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02397-9

Keywords

  • Three-dimensional scaffold
  • Biophysical stimulation
  • Skeletal muscle
  • Tissue engineering
  • Polyurethane scaffold