Skip to main content
Log in

Targeted and Controlled Drug Delivery to a Rat Model of Heart Failure Through a Magnetic Nanocomposite

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

As a novel cardiac myosin activator, Omecamtive Mecarbil (OM) has shown promising results in the management of systolic heart failure in clinical examinations. However, the need for repeated administration along with dose-dependent side effects made its use elusive as a standard treatment for heart failure (HF). We hypothesized that improved cardiac function in systolic HF models would be achieved in lower doses by targeted delivery of OM to the heart. To test this hypothesis, a nanocomposite system was developed by composing chitosan and a magnetic core (Fe3O4), loaded with OM, and directed toward the rats’ heart via a 0.3 T magnet. HF-induced rats were injected with saline, OM, and OM-loaded nanocomposite (n = 8 in each group) and compared with a group of healthy animals (saline injected, n = 8). Knowing the ejection fraction (EF) of healthy (93.68 ± 1.37%) and HF (71.7 ± 1.41%) rats, injection of nanocomposites was associated with improved EF (EF = 89.6 ± 1.40%). Due to increased heart targeting of nanocomposite (2.5 folds), improved cardiac function was seen with only 4% of the OM dose required for infusion, while injecting the same dose of OM without targeting was unable to stop HF progression (EF = 55.33 ± 3.16%) during 7 days. In conclusion, heart nanocomposites targeting improves the EF by up to 18% by only using 4% of the doses traditionally used in treating the HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

OM:

Omecamtive Mecarbil

HF:

Heart failure

MI:

Myocardial infarction

PECAM-1:

Platelet endothelial cell adhesion molecule

cTnI:

Cardiac troponin I

Ang II:

Angiotensin II

SPION:

Superparamagnetic iron oxide nanoparticle

FDA:

Food and drug administration

Nd:

Neodymium

Fe:

Iron

B:

Boron

ICP:

Inductively coupled plasma

HR-TEM:

High resolution transmission electron microscopy

VSM:

Vibrating sample magnetometer

DI:

Deionized

HPLC:

High performance liquid chromatography

TEM:

Transmission electron microscopy

Fe-SEM:

Field emission scanning electron microscopy

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromidefor

OD:

Optical density

PBS:

Phosphate buffer saline

LVID:

Left ventricular internal dimension

LVPW:

Posterior wall thickness

IVS:

Interventricular septal thickness

ESV:

End systolic volume

SV:

Stroke volume

HR:

Heart rate

FS:

Fractional shortening

EF:

Ejection fraction

CO:

Cardiac output

DMEM:

Dulbecco’s modified eagle’s medium

FBS:

Fetal bovine serum

DMSO:

Dimethyl sulfoxide

NBF:

Neutral buffered formalin

H&E:

Hematoxylin and eosin

MT:

Masson’s trichrome

EE:

Encapsulation efficiency

References

  1. Al-Jamal, K. T., J. Bai, J. T. Wang, A. Protti, P. Southern, L. Bogart, H. Heidari, X. Li, A. Cakebread, D. Asker, W. T. Al-Jamal, A. Shah, S. Bals, J. Sosabowski, and Q. A. Pankhurst. Magnetic drug targeting: preclinical in vivo studies, mathematical modeling, and extrapolation to humans. Nano Lett. 16:5652–5660, 2016.

    CAS  PubMed  Google Scholar 

  2. Arruebo, M., R. Fernández-Pacheco, M. R. Ibarra, and J. Santamaría. Magnetic nanoparticles for drug delivery. Nano Today 2:22–32, 2007.

    Google Scholar 

  3. Bakkehaug, J. P., A. B. Kildal, E. T. Engstad, N. Boardman, T. Naesheim, L. Ronning, E. Aasum, T. S. Larsen, T. Myrmel, and O. J. How. Myosin activator Omecamtiv Mecarbil increases myocardial oxygen consumption and impairs cardiac efficiency mediated by resting myosin ATPase activity. Circ. Heart Fail. 8:766–775, 2015.

    CAS  PubMed  Google Scholar 

  4. Bistola, V., and O. Chioncel. Inotropes in acute heart failure. Contin. Cardiol. Educ. 3:107–116, 2017.

    Google Scholar 

  5. Bonta, M., S. Török, B. Hegedus, B. Döme, and A. Limbeck. A comparison of sample preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-MS. Anal. Bioanal. Chem. 409:1805–1814, 2017.

    CAS  PubMed  Google Scholar 

  6. Choi, J.-W., J. W. Park, Y. Na, S.-J. Jung, J. K. Hwang, D. Choi, K. G. Lee, and C.-O. Yun. Using a magnetic field to redirect an oncolytic adenovirus complexed with iron oxide augments gene therapy efficacy. Biomaterials 65:163–174, 2015.

    CAS  PubMed  Google Scholar 

  7. Chomoucka, J., J. Drbohlavova, D. Huska, V. Adam, R. Kizek, and J. Hubalek. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 62:144–149, 2010.

    CAS  PubMed  Google Scholar 

  8. Darbandi Azar, A., F. Tavakoli, H. Moladoust, A. Zare, and A. Sadeghpour. Echocardiographic evaluation of cardiac function in ischemic rats: value of m-mode echocardiography. Res. Cardiovasc. Med. 3:e22941, 2014.

    PubMed  PubMed Central  Google Scholar 

  9. Denkbaş, E. B., E. Kiliçay, C. Birlikseven, and E. Öztürk. Magnetic chitosan microspheres: preparation and characterization. React. Funct. Polym. 50:225–232, 2002.

    Google Scholar 

  10. Du, M., L. Kou, and S. Li. Water-soluble chitosan regulates vascular remodeling in hypertension via NFATc1. Eur. Heart J. Suppl. 18:F38, 2016.

    PubMed  Google Scholar 

  11. Dvir, T., M. Bauer, A. Schroeder, J. H. Tsui, D. G. Anderson, R. Langer, R. Liao, and D. S. Kohane. Nanoparticles for targeting the infarcted heart. Nano Lett. 11:4411–4414, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. El-Boubbou, K. Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine 13:953–971, 2018.

    CAS  PubMed  Google Scholar 

  13. Estelrich, J., E. Escribano, J. Queralt, and M. A. Busquets. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 16:8070–8101, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Florian, A., A. Ludwig, S. Rosch, H. Yildiz, S. Klumpp, U. Sechtem, and A. Yilmaz. Positive effect of intravenous iron-oxide administration on left ventricular remodelling in patients with acute ST-elevation myocardial infarction: a cardiovascular magnetic resonance (CMR) study. Int. J. Cardiol. 173:184–189, 2014.

    PubMed  Google Scholar 

  15. Galrinho, R. D., A. O. Ciobanu, R. C. Rimbaş, C. G. Manole, B. M. Leena, and D. Vinereanu. New echocardiographic protocol for the assessment of experimental myocardial infarction in rats. Maedica 10:85–90, 2015.

    Google Scholar 

  16. Gobbo, O. L., K. Sjaastad, M. W. Radomski, Y. Volkov, and A. Prina-Mello. Magnetic nanoparticles in cancer theranostics. Theranostics 5:1249–1263, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gupta, A. K., and M. Gupta. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021, 2005.

    CAS  PubMed  Google Scholar 

  18. Hartmann, J., F. Knebel, S. Eddicks, M. Beling, A. Grohmann, A. Panda, C. A. Jacobi, J. M. Muller, K. D. Wernecke, G. Baumann, and A. C. Borges. Noninvasive monitoring of myocardial function after surgical and cytostatic therapy in a peritoneal metastasis rat model: assessment with tissue Doppler and non-Doppler 2D strain echocardiography. J. Cardiovasc. Ultrasound 5:23, 2007.

    Google Scholar 

  19. Hashem, S., M. Tiberti, and A. Fornili. Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil. PLoS Comput. Biol. 13:e1005826, 2017.

    PubMed  PubMed Central  Google Scholar 

  20. Hauser, A. K., M. I. Mitov, E. F. Daley, R. C. McGarry, K. W. Anderson, and J. Z. Hilt. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials 105:127–135, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hossein Beyki, M., S. Miri, F. Shemirani, M. Bayat, and P. Rashidi Ranjbar. A new derivative of core–shell magnetic chitosan biopolymer: synthesis, characterization and application for adsorption of lead and copper ions. Clean Soil Air Water 44:710–719, 2016.

    CAS  Google Scholar 

  22. Kaplinsky, E., and G. Mallarkey. Cardiac myosin activators for heart failure therapy: focus on omecamtiv mecarbil. Drugs Context 7:212518, 2018.

    PubMed  PubMed Central  Google Scholar 

  23. Kawahara, Y., K. Tanonaka, T. Daicho, M. Nawa, R. Oikawa, Y. Nasa, and S. Takeo. Preferable anesthetic conditions for echocardiographic determination of murine cardiac function. J. Pharmacol. Sci. 99:95–104, 2005.

    CAS  PubMed  Google Scholar 

  24. Leder, A., N. Raschzok, C. Schmidt, D. Arabacioglu, A. Butter, S. Kolano, L. S. de SousaLisboa, W. Werner, D. Polenz, A. Reutzel-Selke, J. Pratschke, and I. M. Sauer. Micron-sized iron oxide-containing particles for microRNA-targeted manipulation and MRI-based tracking of transplanted cells. Biomaterials 51:129–137, 2015.

    CAS  PubMed  Google Scholar 

  25. Liu, M., M. Li, G. Wang, X. Liu, D. Liu, H. Peng, and Q. Wang. Heart-targeted nanoscale drug delivery systems. J. Biomed. Nanotechnol. 10:2038–2062, 2014.

    CAS  PubMed  Google Scholar 

  26. Lungu, I. I., M. Radulescu, G. D. Mogosanu, and A. M. Grumezescu. pH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy. Rom. J. Morphol. Embryol. 57:23–32, 2016.

    PubMed  Google Scholar 

  27. Ma, Y., H. Wang, D. Yan, Y. Wei, Y. Cao, P. Yi, H. Zhang, Z. Deng, J. Dai, X. Liu, J. Luo, Z. Zhang, S. Sun, and H. Guo. Magnetic resonance imaging revealed splenic targeting of canine parvovirus capsid protein VP2. Sci. Rep. 6:23392, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Markides, H., M. Rotherham, and A. J. El Haj. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J. Nanomater. 2012:11, 2012.

    Google Scholar 

  29. Muthana, M., A. J. Kennerley, R. Hughes, E. Fagnano, J. Richardson, M. Paul, C. Murdoch, F. Wright, C. Payne, M. F. Lythgoe, N. Farrow, J. Dobson, J. Conner, J. M. Wild, and C. Lewis. Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat. Commun. 6:8009, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nagy, L., A. Kovacs, B. Bodi, E. T. Pasztor, G. A. Fulop, A. Toth, I. Edes, and Z. Papp. The novel cardiac myosin activator omecamtiv mecarbil increases the calcium sensitivity of force production in isolated cardiomyocytes and skeletal muscle fibres of the rat. Br. J. Pharmacol. 172:4506–4518, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Neuberger, T., B. Schöpf, H. Hofmann, M. Hofmann, and B. von Rechenberg. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293:483–496, 2005.

    CAS  Google Scholar 

  32. Park, J., N. R. Kadasala, S. A. Abouelmagd, M. A. Castanares, D. S. Collins, A. Wei, and Y. Yeo. Polymer–iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials 101:285–295, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Planelles-Herrero, V. J., J. J. Hartman, J. Robert-Paganin, F. I. Malik, and A. Houdusse. Mechanistic and structural basis for activation of cardiac myosin force production by omecamtiv mecarbil. Nat. Commun. 8:190, 2017.

    PubMed  PubMed Central  Google Scholar 

  34. Prijic, S., and G. Sersa. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol. Oncol. 45:1–16, 2011.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ragab, D., and S. Rohani. Multifunctional ionic liquid-Fe3O4 core/chitosan shell magnetic hydrogel for magnetic responsive, pH-triggered and long-acting hormone therapy. Adv. Biotech. Micro. 1:555554, 2016.

    Google Scholar 

  36. Salemi, V. M., A. M. Bilate, F. J. Ramires, M. H. Picard, D. M. Gregio, J. Kalil, E. C. Neto, and C. Mady. Reference values from M-mode and doppler echocardiography for normal syrian hamsters. Eur. J. Echocardiogr. 6:41–46, 2005.

    PubMed  Google Scholar 

  37. Salimi, M., S. Sarkar, S. Fathi, A. M. Alizadeh, R. Saber, F. Moradi, and H. Delavari. Biodistribution, pharmacokinetics, and toxicity of dendrimer-coated iron oxide nanoparticles in BALB/c mice. Int. J. Nanomed. 13:1483–1493, 2018.

    CAS  Google Scholar 

  38. Shen, L., B. Li, and Y. Qiao. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 11:324, 2018.

    PubMed Central  Google Scholar 

  39. Shen, Y. T., F. I. Malik, X. Zhao, C. Depre, S. K. Dhar, P. Abarzua, D. J. Morgans, and S. F. Vatner. Improvement of cardiac function by a cardiac Myosin activator in conscious dogs with systolic heart failure. Circ. Heart Fail. 3:522–527, 2010.

    PubMed  Google Scholar 

  40. Su, H., Y. Liu, D. Wang, C. Wu, C. Xia, Q. Gong, B. Song, and H. Ai. Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clusters as effective magnetic resonance imaging probes. Biomaterials 34:1193–1203, 2013.

    CAS  PubMed  Google Scholar 

  41. Tate, J. A., A. A. Petryk, A. J. Giustini, and P. J. Hoopes. In vivo biodistribution of iron oxide nanoparticles: an overview. Proc. SPIE Int. Soc. Opt. Eng. 7901:790117, 2011.

    PubMed  PubMed Central  Google Scholar 

  42. Teerlink, J. R., C. P. Clarke, K. G. Saikali, J. H. Lee, M. M. Chen, R. D. Escandon, L. Elliott, R. Bee, M. R. Habibzadeh, J. H. Goldman, N. B. Schiller, F. I. Malik, and A. A. Wolff. Dose-dependent augmentation of cardiac systolic function with the selective cardiac myosin activator, omecamtiv mecarbil: a first-in-man study. Lancet 378:667–675, 2011.

    CAS  PubMed  Google Scholar 

  43. Utter, M. S., D. M. Ryba, B. H. Li, B. M. Wolska, and R. J. Solaro. Omecamtiv mecarbil, a cardiac myosin activator, increases Ca2+ sensitivity in myofilaments with a dilated cardiomyopathy mutant tropomyosin E54K. J. Cardiovasc. Pharmacol. 66:347–353, 2015.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, D.-S., J.-G. Li, H.-P. Li, and F.-Q. Tang. Preparation and drug releasing property of magnetic chitosan-5-fluorouracil nano-particles. Trans. Nonferrous Met. Soc. China 19:1232–1236, 2009.

    CAS  Google Scholar 

  45. Watson, L. E., M. Sheth, R. F. Denyer, and D. E. Dostal. Baseline echocardiographic values for adult male rats. J. Am. Soc. Echocardiogr. 17:161–167, 2004.

    PubMed  Google Scholar 

  46. Zamora-Mora, V., M. Fernández-Gutiérrez, J. S. Román, G. Goya, R. Hernández, and C. Mijangos. Magnetic core–shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr. Polym. 102:691–698, 2014.

    CAS  PubMed  Google Scholar 

  47. Zhou, Z., Y. Sun, J. Shen, J. Wei, C. Yu, B. Kong, W. Liu, H. Yang, S. Yang, and W. Wang. Iron/iron oxide core/shell nanoparticles for magnetic targeting MRI and near-infrared photothermal therapy. Biomaterials 35:7470–7478, 2014.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Alireza Imani at Physiology Department, Faculty of Medicine, Tehran University of Medical Sciences, for saving our time and expenses by suggesting ISO for HF induction.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shahriar Hojjati Emami or Hossein Ahmadi Tafti.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiaie, N., Emami, S.H., Rabbani, S. et al. Targeted and Controlled Drug Delivery to a Rat Model of Heart Failure Through a Magnetic Nanocomposite. Ann Biomed Eng 48, 709–721 (2020). https://doi.org/10.1007/s10439-019-02394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02394-y

Keywords

Navigation