Skip to main content

Advertisement

Log in

A Biomarker for Discriminating Between Migraine With and Without Aura: Machine Learning on Functional Connectivity on Resting-State EEGs

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Advanced analyses of electroencephalography (EEG) are rapidly becoming an important tool in understanding the brain’s processing of pain. To date, it appears that none have been explored as a way of distinguishing between migraine patients with aura (MWA) vs. those without aura (MWoA). In this work, we apply a mixture of predictive, e.g., classification methods and attribute-selection techniques, and traditional explanatory, e.g., statistical, analyses on functional connectivity measures extracted from EEG signal acquired from at-rest participants (N = 52) during their interictal period and tested them against the distinction between MWA and MWoA. We show that a functional connectivity metric of EEG data obtained during resting state can serve as a sole biomarker to differentiate between MWA and MWoA. Using the proposed analysis, we not only have been able to present high classification results (average classification of 84.62%) but also to discuss the underlying neurophysiological mechanisms upon which our technique is based. Additionally, a more traditional statistical analysis on the selected features reveals that MWoA patients show higher than average connectivity in the Theta band (p = 0.03) at rest than MWAs. We propose that our data-driven analysis pipeline can be used for resting-EEG analysis in any clinical context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. https://beta.ichd-3.org/.

  2. There are 262 possible connections, out of which “self-loops” need to be removed (26 possible loops) and only half of possible connections need to be selected, thus the number need to be divided by 2 (this due to the fact that the measured connectivity is undirected).

  3. For the Bonferroni correction, we assumed the most stringent case, i.e. the tested hypotheses are independent, and thus for the required confidence interval of α = 5% and the number of tested hypotheses n = 5 the corrected confidence value would be α/n resulting in 1% (i.e. the required corrected p value should be p ≤ 0.01).

References

  1. Bellman, R. E. Adaptive Control Processes: A Guided Tour. Princeton: Princeton University Press, 1961.

    Book  Google Scholar 

  2. Brighina, F., G. Cosentino, and B. Fierro. Is lack of habituation a biomarker of migraine? A critical perspective. J. Headache Pain 16(S1):A13, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Buono, V. L., et al. Functional connectivity and cognitive impairment in migraine with and without aura. J. Headache Pain 18(1):72, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carter, G., C. Knapp, and A. Nuttall. Estimation of the magnitude-squared coherence function via overlapped fast Fourier transform processing. IEEE Trans. Audio Electroacoust. 21(4):337–344, 1973.

    Article  Google Scholar 

  5. Celka, P. Statistical analysis of the phase-locking value. IEEE Signal Process. Lett. 14(9):577–580, 2007.

    Article  Google Scholar 

  6. Chang, C.-C., and C.-J. Lin. LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3):27, 2011.

    Article  Google Scholar 

  7. Charles, A., and J. M. Hansen. Migraine aura: new ideas about cause, classification, and clinical significance. Curr. Opin. Neurol. 28(3):255–260, 2015.

    Article  PubMed  Google Scholar 

  8. Cucchiara, B., R. Datta, G. K. Aguirre, K. E. Idoko, and J. Detre. Measurement of visual sensitivity in migraine: validation of two scales and correlation with visual cortex activation. Cephalalgia 35(7):585–592, 2015.

    Article  PubMed  Google Scholar 

  9. Damoiseaux, J. S., et al. Consistent resting-state networks across healthy subjects. PNAS 103(37):13848–13853, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Datta, R., G. K. Aguirre, S. Hu, J. A. Detre, and B. Cucchiara. Interictal cortical hyperresponsiveness in migraine is directly related to the presence of aura. Cephalalgia 33(6):365–374, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Tommaso, M., S. Stramaglia, D. Marinazzo, G. Trotta, and M. Pellicoro. Functional and effective connectivity in EEG alpha and beta bands during intermittent flash stimulation in migraine with and without aura. Cephalalgia 33(11):938–947, 2013.

    Article  PubMed  Google Scholar 

  12. de Tommaso, M., G. Trotta, E. Vecchio, K. Ricci, R. Siugzdaite, and S. Stramaglia. Brain networking analysis in migraine with and without aura. J. Headache Pain 18(1):98, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Frid, A. Differences in phase synchrony of brain regions between regular and dyslexic readers. In: 2014 IEEE 28th Convention of Electrical Electronics Engineers in Israel (IEEEI), 2014, pp. 1–4.

  14. Frid, A., and Z. Breznitz. An SVM based algorithm for analysis and discrimination of dyslexic readers from regular readers using ERPs. In: 2012 IEEE 27th Convention of Electrical Electronics Engineers in Israel (IEEEI), 2012, pp. 1–4.

  15. Frid, A., and L. M. Manevitz. Analyzing Cognitive Processes from Complex Neuro-physiologically Based Data. In: AMAI, 2019.

  16. Granovsky, Y., M. Shor, A. Shifrin, E. Sprecher, D. Yarnitsky, and T. Bar-Shalita. Assessment of responsiveness to everyday non-noxious stimuli in pain-free migraineurs with versus without aura. J. Pain 19(8):943–951, 2018.

    Article  PubMed  Google Scholar 

  17. Hesse, W., E. Möller, M. Arnold, and B. Schack. The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J. Neurosci. Methods 124(1):27–44, 2003.

    Article  PubMed  Google Scholar 

  18. Hougaard, A., F. M. Amin, S. Magon, T. Sprenger, E. Rostrup, and M. Ashina. No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura. Eur. J. Neurol. 22(4):702-e46, 2015.

    Article  PubMed  Google Scholar 

  19. Kay, S. M. Modern Spectral Estimation: Theory and Application/Book and Disk. Upper Saddle River: PTR Prentice Hall, 1988.

    Google Scholar 

  20. Kira, K., and L. A. Rendell. A practical approach to feature selection. In: Proceedings of the Ninth International Workshop on Machine Learning, San Francisco, CA, USA, 1992, pp. 249–256.

  21. Lauritzen, M. Pathophysiology of the migraine aura. The spreading depression theory. Brain 117(Pt 1):199–210, 1994.

    Article  PubMed  Google Scholar 

  22. LeCun, Y., Y. Bengio, and G. Hinton. Deep learning. Nature 521(7553):436–444, 2015.

    Article  CAS  Google Scholar 

  23. Lev, R., Y. Granovsky, and D. Yarnitsky. Enhanced pain expectation in migraine: EEG-based evidence for impaired prefrontal function. Headache 53(7):1054–1070, 2013.

    Article  PubMed  Google Scholar 

  24. Mendonça-de-Souza, M., et al. Resilience in migraine brains: decrease of coherence after photic stimulation. Front. Hum. Neurosci. 6:207, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nawa, N. E., and H. Ando. Classification of self-driven mental tasks from whole-brain activity patterns. PLoS ONE 9(5):e97296, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rabiner, L. R., and B. Gold. Theory and Application of Digital Signal Processing, F First (Edition ed.). Englewood Cliffs, NJ: Prentice Hall, 1975.

    Google Scholar 

  27. Raichle, M. E., A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and G. L. Shulman. A default mode of brain function. Proc. Natl. Acad. Sci. 98(2):676–682, 2001.

    Article  CAS  PubMed  Google Scholar 

  28. Russell, M. B., and J. Olesen. A nosographic analysis of the migraine aura in a general population. Brain 119(Pt 2):355–361, 1996.

    Article  PubMed  Google Scholar 

  29. Sand, T., N. Zhitniy, L. R. White, and L. J. Stovner. Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin. Neurophysiol. 119(5):1020–1027, 2008.

    Article  PubMed  Google Scholar 

  30. Tfelt-Hansen, P. C. History of migraine with aura and cortical spreading depression from 1941 and onwards. Cephalalgia 30(7):780–792, 2010.

    Article  CAS  PubMed  Google Scholar 

  31. Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2):70–73, 1967.

    Article  Google Scholar 

  32. Wilkins, L. W. Visual cortex hyperexcitability in migraine in response to sound-induced flash illusions. Neurology 86(12):1172, 2016.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Migraine Research Foundation, USA, for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Frid.

Additional information

Associate Editor Michael Gower oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frid, A., Shor, M., Shifrin, A. et al. A Biomarker for Discriminating Between Migraine With and Without Aura: Machine Learning on Functional Connectivity on Resting-State EEGs. Ann Biomed Eng 48, 403–412 (2020). https://doi.org/10.1007/s10439-019-02357-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02357-3

Keywords

Navigation