Shear-Induced Encapsulation into Red Blood Cells: A New Microfluidic Approach to Drug Delivery


Encapsulating molecules into red blood cells (RBCs) is a challenging topic for drug delivery in clinical practice, allowing to prolong the residence time in the body and to avoid toxic residuals. Fluidic shear stress is able to temporary open the membrane pores of RBCs, thus allowing for the diffusion of a drug in solution with the cells. In this paper, both a computational and an experimental approach were used to investigate the mechanism of shear-induced encapsulation in a microchannel. By means of a computational fluid dynamic model of a cell suspension, it was possible to calculate an encapsulation index that accounts for the effective shear acting on the cells, their distribution in the cross section of the microchannel and their velocity. The computational model was then validated with micro-PIV measurements on a RBCs suspension. Finally, experimental tests with a microfluidic channel showed that, by choosing the proper concentration and fluid flow rate, it is possible to successfully encapsulate a test molecule (FITC-Dextran, 40 kDa) into human RBCs. Cytofluorimetric analysis and confocal microscopy were used to assess the RBCs physiological shape preservation and confirm the presence of fluorescent molecules inside the cells.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1.

    Antonelli, A., C. Sfara, E. Manuali, I. J. Bruce, and M. Magnani. Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine 6(2):211–223, 2011.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Banz, A., M. Cremel, A. Rembert, and Y. Godfrin. In situ targeting of dendritic cells by antigen-loaded red blood cells: a novel approach to cancer immunotherapy. Vaccine 28(17):2965–2972, 2010.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Biagiotti, S., M. F. Paoletti, A. Fraternale, L. Rossi, and M. Magnani. Drug delivery by red blood cells. IUBMB Life 63(8):621–631, 2011.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Bourgeaux, V., J. M. Lanao, B. E. Bax, and Y. Godfrin. Drug-loaded erythrocytes: on the road toward marketing approval. Drug Des. Dev. Therapy 10:665–676, 2016.

    CAS  Article  Google Scholar 

  5. 5.

    Casagrande, G., F. Arienti, A. Mazzocchi, F. Taverna, F. Ravagnani, and M. L. Costantino. Application of controlled shear stresses on the erythrocyte membrane as a new approach to promote molecule encapsulation. Artif. Organs 40(10):959–970, 2016.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Hallow, D. M., R. A. Seeger, P. P. Kamaev, G. R. Prado, M. C. LaPlaca, and M. R. Prausnitz. Shear-induced intracellular loading of cells with molecules by controlled microfluidics. Biotechnol. Bioeng. 99(4):846–854, 2008.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Harisa, G. I., M. F. Ibrahim, and F. K. Alanazi. Erythrocyte-mediated delivery of pravastatin: in vitro study of effect of hypotonic lysis on biochemical parameters and loading efficiency. Arch. Pharm. Res. 35(8):1431–1439, 2012.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Kameneva, M. V., M. J. Watach, and H. S. Borovetz. Gender difference in rheologic properties of blood and risk of cardiovascular diseases. Clin. Hemorheol. Microcirc. 21(3–4):357–363, 1999.

    CAS  PubMed  Google Scholar 

  9. 9.

    Kwon, Y. M., H. S. Chung, C. Moon, J. Yockman, Y. J. Park, S. D. Gitlin, A. E. David, and V. C. Yang. L-Asparaginase encapsulated intact erythrocytes for treatment of acute lymphoblastic leukemia (ALL). J. Control Release 139(3):182–189, 2009.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Lima, R., T. Ishikawa, Y. Imai, and T. Yamaguchi. Blood flow behaviour in microchannels: past, current and future trends. In: Single and 2-Phase Flows on Chemical and Biomedical Engineering, edited by R. Dias, R. Lima, A. A. Martins, and T. M. Mata. London: Bentham Books, 2012, pp. 513–547.

    Google Scholar 

  11. 11.

    Lima, R., S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, and T. Yamaguchi. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed. Microdevices 10(2):153–167, 2008.

    PubMed  Article  Google Scholar 

  12. 12.

    Lizano, C., S. Sanz, J. Luque, and M. Pinilla. In vitro study of alcohol dehydrogenase and acetaldehyde dehydrogenase encapsulated into human erythrocytes by an electroporation procedure. Biochim. Biophys. Acta 1425(2):328–336, 1998.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Magnani, M., L. Rossi, M. D’ascenzo, I. Panzani, L. Bigi, and A. Zanella. Erythrocyte engineering for drug delivery and targeting. Biotechnol. Appl. Biochem. 28(1):1–6, 1998.

    CAS  PubMed  Google Scholar 

  14. 14.

    Meinhart, C. D., and J. G. Santiago. PIV measurement of a microchannel flow. Exp. Fluids 27:414–419, 1999.

    Article  Google Scholar 

  15. 15.

    Millan, C. G., M. L. S. Marinero, A. Z. Castaneda, and J. M. Lanao. Drug, enzyme and peptide delivery using erythrocytes as drug carrier. J. Control Release 95(1):27–49, 2004.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Mueller, S., E. W. Llewellin, and H. M. Mader. The rheology of suspensions of solid particles. Proc. R. Soc. A 466:1201–1228, 2010.

    CAS  Article  Google Scholar 

  17. 17.

    Mulholland, S. E., S. Lee, D. J. McAuliffe, and A. G. Doukas. Cell Loading with laser-generated stress waves: the role of the stress gradient. Pharm. Res. 16(4):514–518, 1999.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Muzykantov, V. R. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin. Drug Deliv. 7(4):403–427, 2010.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Nakano, A., Y. Sugii, M. Minamiyama, and H. Niimi. Measurement of red cell velocity in microvessels using particle image velocimetry (PIV). Clin. Hemorheol. Microcirc. 29(3–4):445–455, 2003.

    PubMed  Google Scholar 

  20. 20.

    Phez, E., C. Faurie, M. Golzio, J. Teissié, and M. P. Rols. New insights in the visualization of membrane permeabilization and DNA/membrane interaction of cells submitted to electric pulses. Biochim. Biophys. Acta 1724(3):248–254, 2005.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Pierigè, F., S. Serafini, L. Rossi, and M. Magnani. Cell-based drug delivery. Adv. Drug Deliv. Rev. 60(2):286–295, 2007.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Poelma, C., P. Vennemann, R. Lindken, and J. Westerweel. In vivo blood flow and wall shear stress measurements in the vitelline network. Exp. Fluids 45(4):703–713, 2008.

    CAS  Article  Google Scholar 

  23. 23.

    Santiago, J. G., S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian. A particle image velocimetry system for microfluidics. Exp. Fluids 25(4):316–319, 1998.

    CAS  Article  Google Scholar 

  24. 24.

    Sharei, A., R. Poceviciute, E. L. Jackson, N. Cho, S. Mao, G. C. Hartoularos, D. Y. Jang, S. Jhunjhunwala, A. Eyerman, T. Schoettle, R. Langer, and K. F. Jensen. Plasma membrane recovery kinetics of a microfluidic intracellular delivery platform. Integr. Biol. 6(4):470–475, 2014.

    CAS  Article  Google Scholar 

  25. 25.

    Sharei, A., J. Zoldan, A. Adamo, W. Y. Sim, N. Cho, E. Jackson, S. Mao, S. Schneider, M.-J. Han, A. Lytton-Jean, P. A. Basto, S. Jhunjhunwala, J. Lee, D. A. Heller, J. W. Kang, G. C. Hartoularos, K.-S. Kim, D. G. Anderson, R. Langer, and K. F. Jensen. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. 110(6):2082–2087, 2013.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Sherwood, J. M., D. Holmes, E. Kaliviotis, and S. Balabani. Spatial distributions of red blood cells significantly alter local haemodynamics. PLoS ONE 9(6):e100473, 2014.

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Shi, J., L. Kundrat, N. Pishesha, A. Bilate, C. Theile, T. Maruyama, S. K. Dougan, H. L. Ploegh, and H. F. Lodish. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. PNAS 111(28):10131–10135, 2014.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Tillman, W., H. Reul, M. Herold, K.-H. Bruss, and J. van Gilse. In vitro wall shear measurements at aortic valve prostheses. J. Biomech. 17:263–279, 1984.

    Article  Google Scholar 

Download references


We thank Dr. Emanuela Iacchetti, Politecnico di Milano, for her essential help in the use of the confocal microscope and Dott. Mariangela Mazzi, Verona University, for helping setup the statistical analysis.

Conflict of interest

M. Piergiovanni, G. Casagrande, E. Bianchi and M.L. Costantino filed a patent based on the results here presented (N. PCT/IB2018/060433—2018, December 21st).

Author information



Corresponding author

Correspondence to Monica Piergiovanni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Umberto Morbiducci oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 473 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piergiovanni, M., Casagrande, G., Taverna, F. et al. Shear-Induced Encapsulation into Red Blood Cells: A New Microfluidic Approach to Drug Delivery. Ann Biomed Eng 48, 236–246 (2020).

Download citation


  • Micro-particle image velocimetry
  • Computational fluid dynamic
  • Two-phase mixture model
  • Erythrocytes
  • Drug carrier
  • Microdevice
  • Micro-hemodynamics