A Concentric Tube Robot System for Rigid Bronchoscopy: A Feasibility Study on Central Airway Obstruction Removal

Abstract

New robotic systems have recently emerged to assist with peripheral lung access, but a robotic system for rigid bronchoscopy has yet to be developed. We describe a new robotic system that can deliver thin robotic manipulators through the ports of standard rigid bronchoscopes. The manipulators bend and elongate to provide maneuverability of surgical tools at the endoscope tip, without endoscope motion. We describe an initial feasibility study on the use of this system to bronchoscopically treat a central airway obstruction (CAO). CAO is prevalent and can be life-threatening in patients with large tumors, and conventional rigid bronchoscopic treatments place patients at risk of complications including broken teeth, neck trauma and damage to oropharyngeal structures due to significant forces induced by bronchoscope tilting and manipulation. In this study, we used an ex vivo ovine airway model to demonstrate the ability of a physician using the robotic system to efficiently remove tissue and restore the airway. Pre- and post-operative CT scans showed that the robot was able to reduce the degree of airway obstruction stenosis from 75 to 14% on average for five CAO resections performed in an ex vivo animal model. Using cadaver experiments, we demonstrated the potential of the robotic system to substantially reduce the intraoperative forces applied to the patient’s head and neck (from 80.6 to 4.1 N). These preliminary results illustrate that CAO removal is feasible with our new rigid bronchoscopy robot system, and that this approach has the potential to reduce forces applied to the patient due to bronchoscope angulation, and thereby reduce the risk of complications encountered during CAO surgery.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1.

    Breatnach, E., G. Abbott, and R. Fraser. Dimensions of the normal human trachea. Am. J. Roentgenol. 142:903–906, 1984.

    CAS  Google Scholar 

  2. 2.

    Brichet, A., C. Verkindre, J. Dupont, M. Carlier, J. Darras, A. Wurtz, P. Ramon, and C. Marquette. Multidisciplinary approach to management of postintubation tracheal stenoses. Eur. Respir. J. 13:888–893, 1999.

    CAS  PubMed  Google Scholar 

  3. 3.

    Brodie, A. and N. Vasdev. The future of robotic surgery. Robotics 100:4–13, 2018.

    Google Scholar 

  4. 4.

    Casal, R. F., J. Iribarren, G. Eapen, D. Ost, R. Morice, C. Lan, L. Cornwell, F. A. Almeida, H. Grosu, and C. A. Jimenez. Safety and effectiveness of microdebrider bronchoscopy for the management of central airway obstruction. Respirology 18:1011–1015, 2013.

    PubMed  Google Scholar 

  5. 5.

    Chan, E. Malignant airway obstruction: treating central airway obstruction in the oncologic setting. UWOMJ 80:7–9, 2011.

    Google Scholar 

  6. 6.

    Chan, J. Y. K., E. W. Y. Wong, R. K. Tsang, F. C. Holsinger, M. C. F. Tong, P. W. Y. Chiu, and S. S. M. Ng. Early results of a safety and feasibility clinical trial of a novel single – port flexible robot for transoral robotic surgery. Eur. Arch. Otorhinolaryngol. 274:3993–3996, 2017.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chen, C., J. P. Bent, and S. R. Parikh. Powered debridement of suprastomal granulation tissue to facilitate pediatric tracheotomy decannulation. Int. J. Pediatr. Otorhinolaryngol. 75:1558–1561, 2011.

    PubMed  Google Scholar 

  8. 8.

    Chen, K., M. Joseph Varon, O. C. Wenker, et al. Malignant airway obstruction: recognition and management. J. Emerg. Med. 16:83–92, 1998.

    CAS  PubMed  Google Scholar 

  9. 9.

    Chhajed, P. N., F. Baty, M. Pless, S. Somandin, M. Tamm, and M. H. Brutsche. Outcome of treated advanced non-small cell lung cancer with and without central airway obstruction. Chest 130:1803–1807, 2006.

    PubMed  Google Scholar 

  10. 10.

    Ernst, A., D. Feller-Kopman, H. D. Becker, and A. C. Mehta. Central airway obstruction. Am. J. Respir. Crit. Care Med. 169:1278–1297, 2004.

    PubMed  Google Scholar 

  11. 11.

    Fedorov, A., R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. V. Miller, S. Pieper, and R. Kikinis. 3d slicer as an image computing platform for the quantitative imaging network. Magn. Reason. Imaging 30:1323 – 1341, 2012. Quantitative Imaging in Cancer.

    Google Scholar 

  12. 12.

    Feins, R. H., H. M. Burkhart, J. V. Conte, D. N. Conte, J. I. Fann, G. L. Hicks, J. C. Nesbitt, P. S. Ramphal, S. E. Schiro, K. R. Shen, et al. Simulation-based training in cardiac surgery. Ann. Thorac. Surg. 103:312–321, 2017.

    PubMed  Google Scholar 

  13. 13.

    Gilbert, H. B., D. C. Rucker, and R. J. Webster III. Concentric tube robots: the state of the art and future directions. Robot Res.. 114:253–269, 2016.

    Google Scholar 

  14. 14.

    Ginsberg, R., E. Vokes, and A. Raben. Non-small cell lung cancer. In: Cancer: Principles and Practice of Oncology. Philadelphia: Lippincott Williams and Wilkins, 1997, pp. 858–910.

    Google Scholar 

  15. 15.

    Gompelmann, D., R. Eberhardt, and F. Herth. Novel endoscopic approaches to treating chronic obstructive pulmonary disease and emphysema. In: Seminars in Respiratory and Critical Care Medicine, volume 36, pp. 609–615. Noida: Thieme Medical Publishers, 2015.

    Google Scholar 

  16. 16.

    Hans, S., B. Delas, P. Gorphe, M. Ménard, and D. Brasnu. Transoral robotic surgery in head and neck cancer. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 129:32–37, 2012.

    CAS  PubMed  Google Scholar 

  17. 17.

    Hendrick, R. J., C. R. Mitchell, S. D. Herrell, and R. J. W. Iii. Hand-held transendoscopic robotic manipulators: a transurethral laser prostate surgery case study. Int. J. Robot Res. 34:1559–1572, 2016.

    Google Scholar 

  18. 18.

    Hohenforst-Schmidt, W., P. Zarogoulidis, G. Pitsiou, B. Linsmeier, D. Tsavlis, I. Kioumis, E. Papadaki, L. Freitag, T. Tsiouda, J. F. Turner, et al. Drug eluting stents for malignant airway obstruction: a critical review of the literature. J. Cancer 7:377, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Ingenito, E. P., D. E. Wood, and J. P. Utz. Bronchoscopic lung volume reduction in severe emphysema. Proc. Am. Thorac. Soc. 5:454–460, 2008.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kumar, A. and B. B. Asaf. Robotic thoracic surgery: the state of the art. J. Minim. Access Surg. 11:60, 2015.

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mahmood, K. and M. M. Wahidi. Ablative therapies for central airway obstruction. Semin. Respir. Crit. Care Med. 35:681–692, 2014.

    PubMed  Google Scholar 

  22. 22.

    Mahoney, A. W., H. B. Gilbert, and R. J. Webster. Chapter 7: A review of concentric tube robots: modeling, control, design, planning, and sensing. In: The Encyclopedia of Medical Robotics, volume 1, pp. 181–202. Singapore: World Scientific, 2018.

    Google Scholar 

  23. 23.

    Makris, K. I., E. Rieder, and L. L. Swanstrom. Natural Orifice Trans-Luminal Endoscopic Surgery (NOTES) in thoracic surgery. Semin. Thorac. Cardiovasc. Surg. 22:302–309, 2010.

    PubMed  Google Scholar 

  24. 24.

    Maloney, J. D., T. L. Weigel, and R. B. Love. Endoscopic repair of bronchial dehiscence after lung transplantation. Ann. Thorac. Surg. 72:2109–2111, 2001.

    CAS  PubMed  Google Scholar 

  25. 25.

    Mattheis, S., P. Hasskamp, L. Holtmann, C. Sch, U. Geisthoff, N. Dominas, and S. Lang. Flex robotic system in transoral robotic surgery: the first 40 patients. Head Neck 39: 471–475, 2017.

    PubMed  Google Scholar 

  26. 26.

    McDougall, J. and D. Cortese. Neodymium–YAG laser therapy of malignant airway obstruction. a preliminary report. In: Mayo Clinic Proceedings, volume 58, pp. 35–39. 1983.

  27. 27.

    Mineshita, M. and D.-J. Slebos. Bronchoscopic interventions for chronic obstructive pulmonary disease. Respirology 19:1126–1137, 2014.

    PubMed  Google Scholar 

  28. 28.

    Mokadam, N. A., J. I. Fann, G. L. Hicks, J. C. Nesbitt, H. M. Burkhart, J. V. Conte, D. N. Coore, P. S. Ramphal, K. R. Shen, J. D. Walker, et al. Experience with the cardiac surgery simulation curriculum: results of the resident and faculty survey. Ann. Thorac. Surg. 103:322–328, 2017.

    PubMed  Google Scholar 

  29. 29.

    Mudambi, L., R. Miller, and G. A. Eapen. Malignant central airway obstruction. J. Thorac. Dis. 9:S1087, 2017.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Murgu, S. and H. G. Colt. Morphometric bronchoscopy in adults with central airway obstruction: case illustrations and review of the literature. Laryngoscope 119:1318–1324, 2009.

    PubMed  Google Scholar 

  31. 31.

    Murgu, S. and H. Colt. Subjective assessment using still bronchoscopic images misclassifies airway narrowing in laryngotracheal stenosis. Interact. Cardiovasc. Thorac. Surg. 16:655–660, 2013.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Nicastri, D. G. and T. S. Weiser. Rigid bronchoscopy: indications and techniques. YOTCT 17:44–51, 2012.

    Google Scholar 

  33. 33.

    Nouraei, S. A., K. V. Kapoor, S. M. Nouraei, K. Ghufoor, D. J. Howard, and G. S. Sandhu. Results of endoscopic tracheoplasty for treating tracheostomy-related airway stenosis. Clin. Otolaryngol. 32:471–475, 2007.

    CAS  PubMed  Google Scholar 

  34. 34.

    Ost, D. E., A. Ernst, H. B. Grosu, X. Lei, J. Diaz-Mendoza, M. Slade, T. R. Gildea, M. S. Machuzak, C. A. Jimenez, J. Toth, et al.Therapeutic bronchoscopy for malignant central airway obstruction. Chest 147:1282–1298, 2015.

    PubMed  Google Scholar 

  35. 35.

    Pathak, V., I. Welsby, K. Mahmood, M. Wahidi, N. Macintyre, and S. Shofer. Ventilation and anesthetic approaches for rigid bronchoscopy. Ann. Am. Thorac. Soc. 11:628–634, 2014.

    PubMed  Google Scholar 

  36. 36.

    Raman, T., K. Chatterjee, B. N. Alzghoul, A. A. Innabi, O. Tulunay, T. Bartter, and N. K. Meena. A bronchoscopic approach to benign subglottic stenosis. SAGE Open Med. Case Rep. 5:2050313X1771315, 2017.

    Google Scholar 

  37. 37.

    Remacle, M., V. Prasad, G. Lawson, L. Plisson, V. Bachy, and S. V. D. Vorst. Transoral robotic surgery (TORS) with the Medrobotics Flex System: first surgical application on humans. Eur. Arch. Otorhinolaryngol. 272:1451–1455, 2015.

    CAS  PubMed  Google Scholar 

  38. 38.

    Schuler, P. J., T. K. Hoffmann, J. A. Veit, D. T. Friedrich, and M. O. Scheithauer. Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system. Int. J. Med. Robot. Comput. Assist. Surg. 13:1–7, 2017.

    Google Scholar 

  39. 39.

    Stahl, D., K. Richard, and T. Papadimos. Complications of bronchoscopy: a concise synopsis. Int. J. Crit. Illn. Inj. Sci. 5:189–195, 2015.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Stratakos, G., V. Gerovasili, C. Dimitropoulos, I. Giozos, F. T. Filippidis, S. Gennimata, P. Zarogoulidis, A. Zissimopoulos, A. Pataka, N. Koufos, et al. Survival and quality of life benefit after endoscopic management of malignant central airway obstruction. J. Cancer 7:794, 2016.

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Toma, T. P., N. S. Hopkinson, J. Hillier, D. M. Hansell, C. Morgan, P. G. Goldstraw, M. I. Polkey, and D. M. Geddes. Bronchoscopic volume reduction with valve implants in patients with severe emphysema. Lancet 361:931–933, 2003.

    PubMed  Google Scholar 

  42. 42.

    Vishwanath, G., K. Madan, A. Bal, A. N. Aggarwal, D. Gupta, and R. Agarwal. Rigid bronchoscopy and mechanical debulking in the management of central airway tumors: an indian experience. J. Bronchol. Interv. Pulmonol. 20:127–133, 2013.

    Google Scholar 

  43. 43.

    Williamson, J., M. Phillips, D. Hillman, and P. Eastwood. Managing obstruction of the central airways. Intern. Med. J 40:399–410, 2010.

    CAS  PubMed  Google Scholar 

  44. 44.

    Yang, B., F. Zhao, Z. Zong, J. Yuan, X. Song, M. Ren, Q. Meng, G. Dai, F. Kong, S. Xie, et al. Preferences for treatment of lobectomy in chinese lung cancer patients: video-assisted thoracoscopic surgery or open thoracotomy? Patient Prefer. Adher. 8:1393, 2014.

    Google Scholar 

  45. 45.

    Zhang, L. and S. Gao. Robot-assisted thoracic surgery versus open thoracic surgery for lung cancer: a system review and meta-analysis. Int. J. Clin. Exp. Med. 8:17804, 2015.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors thank the National Institutes of Health (NIH) Small Business Technology Transfer (STTR) for Grant R41 HL140709 which supported the work described in this paper. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Joshua B. Gafford.

Ethics declarations

Conflict of interest

The authors have reported to Annals of Biomedical Engineering the following conflicts of interest: The robot concept described in this paper originated in R.W.’s laboratory at Vanderbilt University, and is in the early stages of technology transfer to a startup company, Virtuoso Surgical, Inc., created for purposes of bringing this technology to market, under a Phase I STTR grant from the National Institutes of Health. S.W., N.D., E.B., R.H., D.H. and R.W. are equity holders in Virtuoso. S.W., N.D., E.B. and R.H. are employed by Virtuoso. R.W. and R.H. are founders and board members of Virtuoso, with R.W. serving as president and R.H. serving as Chief Operating Officer. The robot described in this paper is an early-stage prototype, and has not yet begun to go through the FDA approval process. It is not cleared for human use or available for purchase. It will undergo a number of extensive design revisions before becoming a commercial product.

Ethical Approval

All experiments were performed by a single interventional pulmonologist (F.M.). We did not recruit a multiple-user cohort for these proof-of-concept experiments. Based on this consideration, and the fact that no patients or live animals were involved in our experiments, prior approval from an ethics committee (IRB or IACUC) was not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 16686 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gafford, J.B., Webster, S., Dillon, N. et al. A Concentric Tube Robot System for Rigid Bronchoscopy: A Feasibility Study on Central Airway Obstruction Removal. Ann Biomed Eng 48, 181–191 (2020). https://doi.org/10.1007/s10439-019-02325-x

Download citation

Keywords

  • Central Airway Obstruction
  • Bronchoscopy
  • Robotics