Skip to main content

Advertisement

Log in

Magnetic Resonance Navigation for Targeted Embolization in a Two-Level Bifurcation Phantom

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This work combines a particle injection system with our proposed magnetic resonance navigation (MRN) sequence with the intention of validating MRN in a two-bifurcation phantom for endovascular treatment of hepatocellular carcinoma (HCC). A theoretical physical model used to calculate the most appropriate size of the magnetic drug-eluting bead (MDEB, 200 μm) aggregates was proposed. The aggregates were injected into the phantom by a dedicated particle injector while a trigger signal was automatically sent to the MRI to start MRN which consists of interleaved tracking and steering sequences. When the main branch of the phantom was parallel to B0, the aggregate distribution ratio in the (left–left, left–right, right–left and right–right divisions was obtained with results of 8, 68, 24 and 0% respectively at baseline (no MRN) and increased to 84%, 100, 84 and 92% (p < 0.001, p = 0.004, p < 0.001, p < 0.001) after implementing our MRN protocol. When the main branch was perpendicular to B0, the right-left branch, having the smallest baseline distribution rate of 0%, reached 80% (p < 0.001) after applying MRN. Moreover, the success rate of MRN was always more than 92% at the 1st bifurcation in the experiments above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

DEB:

Drug-eluting bead

HCC:

Hepatocellular carcinoma

MRI:

Magnetic resonance imaging

MRN:

Magnetic resonance navigation

MDEB:

Magnetic drug-eluting bead

TACE:

Trans-catheter arterial chemoembolization

References

  1. Altekruse, S. F., K. A. McGlynn, and M. E. Reichman. Hepatocellular carcinoma incidence, mortality, and survival trends in the united states from 1975 to 2005. J. Clin. Oncol. 27:1485–1491, 2009.

    PubMed  PubMed Central  Google Scholar 

  2. Belghiti, J., and R. Kianmanesh. Surgical treatment of hepatocellular carcinoma. Hpb 7:42–49, 2005.

    PubMed  PubMed Central  Google Scholar 

  3. Bigot, A., G. Soulez, and S. Martel. A prototype of injector to control and to detect the release of magnetic beads within the constraints of multibifurcation magnetic resonance navigation procedures. Magn. Reson. Med. 77:444–452, 2017.

    PubMed  Google Scholar 

  4. Bigot, A., C. Tremblay, G. Soulez, and S. Martel. Magnetic resonance navigation of a bead inside a three-bifurcation PMMA phantom using an imaging gradient coil insert. IEEE Trans. Robot 30:719–727, 2014.

    Google Scholar 

  5. Buisman, F., M. Homs, D. Grünhagen, W. Filipe, R. Bennink, M. Besselink, I. B. Rinkes, R. Bruijnen, A. Cercek, and M. D’Angelica. Adjuvant hepatic arterial infusion pump chemotherapy and resection versus resection alone in patients with low-risk resectable colorectal liver metastases—the multicenter randomized controlled PUMP trial. BMC Cancer 19:327, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chaubey, G. S., C. Barcena, N. Poudyal, C. B. Rong, J. M. Gao, S. H. Sun, and J. P. Liu. Synthesis and stabilization of FeCo nanoparticles. J. Am. Chem. Soc. 129:7214–7215, 2007.

    CAS  PubMed  Google Scholar 

  7. da Silveira, L. A., F. B. C. Silveira, and V. P. S. Fazan. Arterial diameter of the celiac trunk and its branches. Anatomical study. Acta Cir. Bras. 24:43–47, 2009.

    PubMed  Google Scholar 

  8. Datta, J., R. R. Narayan, N. E. Kemeny, and M. I. D’Angelica. Role of hepatic artery infusion chemotherapy in treatment of initially unresectable colorectal liver metastases: a reviewhepatic artery infusion chemotherapy for initially unresectable colorectal liver metastaseshepatic artery infusion chemotherapy for initially unresectable colorectal liver metastases. JAMA Surg. 2019. https://doi.org/10.1001/jamasurg.2019.1694.

    Article  PubMed  Google Scholar 

  9. De Baere, T., and P. Mariani. Surgical or percutaneous hepatic artery cannulation for chemotherapy. J. Visc. Surg. 151(Suppl 1):S17–20, 2014.

    PubMed  Google Scholar 

  10. Deipolyi, A. R., R. Oklu, S. Al-Ansari, A. X. Zhu, L. Goyal, and S. Ganguli. Safety and efficacy of 70–150 mum and 100–300 mum drug-eluting bead transarterial chemoembolization for hepatocellular carcinoma. J. Vasc. Interv. Radiol. 26:516–522, 2015.

    PubMed  Google Scholar 

  11. Dhanasekaran, R., D. A. Kooby, C. A. Staley, J. S. Kauh, V. Khanna, and H. S. Kim. Comparison of conventional transarterial chemoembolization (TACE) and chemoembolization with doxorubicin drug eluting beads (DEB) for unresectable hepatocelluar carcinoma (HCC). J. Surg. Oncol. 101:476–480, 2010.

    PubMed  Google Scholar 

  12. Felfoul, O., A. T. Becker, G. Fagogenis, and P. E. Dupont. Simultaneous steering and imaging of magnetic particles using MRI toward delivery of therapeutics. Sci. Rep. UK 6:33567, 2016.

    CAS  Google Scholar 

  13. Folio, D., and A. Ferreira. Two-dimensional robust magnetic resonance navigation of a ferromagnetic microrobot using Pareto optimality. IEEE Trans. Robot 33:583–593, 2017.

    Google Scholar 

  14. Gaba, R. C., R. J. Lewandowski, R. Hickey, M. O. Baerlocher, E. I. Cohen, S. R. Dariushnia, B. J. d’Othee, S. A. Padia, R. Salem, D. S. Wang, B. Nikolic, D. B. Brown, and Society of Interventional Radiology Technology Assessment. Transcatheter therapy for hepatic malignancy: standardization of terminology and reporting criteria. J. Vasc. Interv. Radiol. 27:457–473, 2016.

    PubMed  Google Scholar 

  15. Gaba, R. C., R. P. Lokken, R. M. Hickey, A. J. Lipnik, R. J. Lewandowski, R. Salem, D. B. Brown, T. G. Walker, J. E. Silberzweig, M. O. Baerlocher, A. M. Echenique, M. Midia, J. W. Mitchell, S. A. Padia, S. Ganguli, T. J. Ward, J. L. Weinstein, B. Nikolic, and S. R. Dariushnia. quality improvement guidelines for transarterial chemoembolization and embolization of hepatic malignancy. J. Vasc. Interv. Radiol. 28:1210–1223.e1213, 2017.

    PubMed  Google Scholar 

  16. Hama, N., Y. Totoki, F. Miura, K. Tatsuno, M. Saito-Adachi, H. Nakamura, Y. Arai, F. Hosoda, T. Urushidate, and S. Ohashi. Epigenetic landscape influences the liver cancer genome architecture. Nat. Commun. 9:1643, 2018.

    PubMed  PubMed Central  Google Scholar 

  17. Herber, S., J. Schneider, B. Brecher, T. Höhler, M. Thelen, G. Otto, and M. Pitton. TACE: therapy of the HCC before liver transplantation—experiences. RoFo: Fortschr. auf dem Gebiete der Rontgenstrahlen und der Nuklearmed. 177:681–690, 2005.

    CAS  Google Scholar 

  18. Lee, K. H., E. Liapi, J. A. Vossen, M. Buijs, V. P. Ventura, C. Georgiades, K. Hong, I. Kamel, M. S. Torbenson, and J. F. Geschwind. Distribution of iron oxide-containing Embosphere particles after transcatheter arterial embolization in an animal model of liver cancer: evaluation with MR imaging and implication for therapy. J. Vasc. Interv. Radiol. 19:1490–1496, 2008.

    PubMed  PubMed Central  Google Scholar 

  19. Lewandowski, R. J., J. F. Geschwind, E. Liapi, and R. Salem. Transcatheter intraarterial therapies: rationale and overview. Radiology 259:641–657, 2011.

    PubMed  PubMed Central  Google Scholar 

  20. Li, N., F. Michaud, Z. Nosrati, D. Loghin, C. Tremblay, R. Plantefève, K. Saatchi, U. O. Häfeli, S. Martel and G. Soulez. MRI-compatible injection system for magnetic microparticle embolization. IEEE Transactions on Biomedical Engineering, 2018.

  21. Li, N., C. Tremblay and S. Martel. Combining oscillating flow and clinical MRI gradients for targeted therapy. In: 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). IEEE, 2017, pp. 1–4.

  22. Lyu, N., Y. Kong, T. Pan, L. Mu, S. Li, Y. Liu, H. Deng, J. Li, M. Shi, and L. Xu. Hepatic arterial infusion of oxaliplatin, fluorouracil, and leucovorin in hepatocellular cancer with extrahepatic spread. J. Vasc. Interv. Radiol. 30:349–357, 2019.

    PubMed  Google Scholar 

  23. Ma, S. Biology and clinical implications of CD133 + liver cancer stem cells. Exp. Cell Res. 319:126–132, 2013.

    CAS  PubMed  Google Scholar 

  24. Martel, S. Microrobotics in the vascular network: present status and next challenges. J. Micro-Bio Robot. 8:41–52, 2013.

    Google Scholar 

  25. Mathieu, J. B., and S. Martel. Aggregation of magnetic microparticles in the context of targeted therapies actuated by a magnetic resonance imaging system. J. Appl. Phys. 106:044904, 2009.

    Google Scholar 

  26. Mellal, L., K. Belharet, D. Folio, and A. Ferreira. Optimal structure of particles-based superparamagnetic microrobots: application to MRI guided targeted drug therapy. J. Nanopart. Res. 17:64, 2015.

    Google Scholar 

  27. Michaud, F., N. Li, R. Plantefeve, Z. Nosrati, C. Tremblay, K. Saatchi, G. Moran, A. Bigot, U. O. Hafeli, S. Kadoury, A. Tang, P. Perreault, S. Martel, and G. Soulez. Selective embolization with magnetized microbeads using magnetic resonance navigation in a controlled-flow liver model. Med. Phys. 46:789–799, 2019.

    PubMed  Google Scholar 

  28. Moran, A., L. F. Ramos, O. Picado, F. Pendola, D. Sleeman, V. Dudeja, N. Merchant, and D. Yakoub. Hepatocellular carcinoma: resection with adjuvant hepatic artery infusion therapy vs resection alone. A systematic review and meta-analysis. J. Surg. Oncol. 119:455–463, 2019.

    PubMed  Google Scholar 

  29. Ni, J.-Y., S.-S. Liu, H.-L. Sun, W.-D. Wang, Z.-L. Zhong, S.-N. Hou, Y.-T. Chen, and L.-F. Xu. Transcatheter hepatic arterial infusion chemotherapy vs sorafenib in the treatment of patients with hepatocellular carcinoma of Barcelona clinic liver cancer stage c: a meta-analysis of asian population. OncoTargets Therapy 11:7883, 2018.

    PubMed  PubMed Central  Google Scholar 

  30. Nosrati, Z., N. Li, F. Michaud, S. Ranamukhaarachchi, S. Karagiozov, G. Soulez, S. Martel, K. Saatchi, and U. O. Hafeli. Development of a Coflowing device for the size-controlled preparation of magnetic-polymeric microspheres as embolization agents in magnetic resonance navigation technology. Acs Biomater. Sci. Eng. 4:1092–1102, 2018.

    CAS  PubMed  Google Scholar 

  31. Odisio, B. C., A. Ashton, Y. Yan, W. Wei, A. Kaseb, M. J. Wallace, J. N. Vauthey, S. Gupta, and A. L. Tam. Transarterial hepatic chemoembolization with 70–150 microm drug-eluting beads: assessment of clinical safety and liver toxicity profile. J. Vasc. Interv. Radiol. 26:965–971, 2015.

    PubMed  PubMed Central  Google Scholar 

  32. Olamaei, N., F. Cheriet, S. Deschenes, and S. Martel. Dynamic tracking of magnetic nanoparticles for mapping microvascular networks using a clinical 1.5 T magnetic resonance scanner. Appl. Phys. Lett. 104:213703, 2014.

    Google Scholar 

  33. Pernot, S., G. Velut, R. H. Kourie, G. Amouyal, M. Sapoval, A. L. Pointet, B. Landi, Y. Zaimi, C. Lepere, and O. Pellerin. 5-FU or mitomycin C hepatic arterial infusion after failure of arterial oxaliplatin in patients with colorectal cancer unresectable liver metastases. Clin. Res. Hepatol. Gastroenterol. 42:255–260, 2018.

    CAS  PubMed  Google Scholar 

  34. Pouponneau, P., J. C. Leroux, and S. Martel. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 30:6327–6332, 2009.

    CAS  PubMed  Google Scholar 

  35. Pouponneau, P., J. C. Leroux, G. Soulez, L. Gaboury, and S. Martel. Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation. Biomaterials 32:3481–3486, 2011.

    CAS  PubMed  Google Scholar 

  36. Pouponneau, P., G. Soulez, G. Beaudoin, J.-C. Leroux, and S. Martel. MR imaging of therapeutic magnetic microcarriers guided by magnetic resonance navigation for targeted liver chemoembolization. Cardiovasc. Intervent. Radiol. 37:784–790, 2014.

    PubMed  Google Scholar 

  37. Rahib, L., B. D. Smith, R. Aizenberg, A. B. Rosenzweig, J. M. Fleshman, and L. M. Matrisian. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74:2913–2921, 2014.

    CAS  PubMed  Google Scholar 

  38. Roberts, L. R., C. B. Sirlin, F. Zaiem, J. Almasri, L. J. Prokop, J. K. Heimbach, M. H. Murad, and K. Mohammed. Imaging for the diagnosis of hepatocellular carcinoma: a systematic review and meta-analysis. Hepatology 67:401–421, 2018.

    PubMed  Google Scholar 

  39. Schenck, J. F. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med. Phys. 23:815–850, 1996.

    CAS  PubMed  Google Scholar 

  40. Tajiri, K., Y. Futsukaichi, S. Kobayashi, K. Nagata, S. Yasumura, T. Takahara, M. Minemura, and I. Yasuda. Efficacy of on-demand intrahepatic arterial therapy in combination with sorafenib for advanced hepatocellular carcinoma. OncoTargets Therapy 12:2205, 2019.

    PubMed  PubMed Central  Google Scholar 

  41. Varela, M., M. I. Real, M. Burrel, A. Forner, M. Sala, M. Brunet, C. Ayuso, L. Castells, X. Montana, J. M. Llovet, and J. Bruix. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J. Hepatol. 46:474–481, 2007.

    CAS  PubMed  Google Scholar 

  42. Vartholomeos, P., M. Fruchard, A. Ferreira, and C. Mavroidis. MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu. Rev. Biomed. Eng. 13:157–184, 2011.

    CAS  PubMed  Google Scholar 

  43. Waller, L. P., V. Deshpande, and N. Pyrsopoulos. Hepatocellular carcinoma: a comprehensive review. World J. Hepatol. 7:2648–2663, 2015.

    PubMed  PubMed Central  Google Scholar 

  44. Weinstein, J. S., C. G. Varallyay, E. Dosa, S. Gahramanov, B. Hamilton, W. D. Rooney, L. L. Muldoon, and E. A. Neuwelt. Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J. Cerebr. Blood F Met 30:15–35, 2010.

    CAS  Google Scholar 

  45. Yan, X., Q. Zhou, M. Vincent, Y. Deng, J. Yu, J. Xu, T. Xu, T. Tang, L. Bian, and Y.-X. J. Wang. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Robot. 2:eaaq1155, 2017.

    PubMed  Google Scholar 

  46. Zhuang, B.-W., W. Li, X.-H. Xie, H.-T. Hu, M.-D. Lu, and X.-Y. Xie. Sorafenib versus hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma: a systematic review and meta-analysis. Jpn. J. Clin. Oncol. 2019. https://doi.org/10.1093/jjco/hyz06.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC), Operating Grant—CHRP (CIHR Partnered) (CHRP 478474-15) and Canadian Institutes of Health Research (CIHR), Operating Grant—CHRP (NSERC Partnered) (CPG-140179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Soulez.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Jiang, Y., Plantefève, R. et al. Magnetic Resonance Navigation for Targeted Embolization in a Two-Level Bifurcation Phantom. Ann Biomed Eng 47, 2402–2415 (2019). https://doi.org/10.1007/s10439-019-02317-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02317-x

Keywords

Navigation