Skip to main content

Advertisement

Log in

Effects of a Bioactive SPPEPS Peptide on Chondrogenic Differentiation of Mesenchymal Stem Cells

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A synthetic ‘chondroinductive’ biomaterial that could induce chondrogenesis without the need for growth factors, extracellular matrix, or pre-seeded cells could revolutionize orthopedic regenerative medicine. The objective of the current study was thus to introduce a synthetic SPPEPS peptide and evaluate its ability to induce chondrogenic differentiation. In the current study, dissolving a synthetic chondroinductive peptide candidate (100 ng/mL SPPEPS) in the culture medium of rat bone marrow-derived mesenchymal stem cells (rBMSCs) elevated collagen type II gene expression compared to the negative control (no growth factor or peptide in the cell culture medium) after 3 days. In addition, proteomic analyses indicated similarities in pathways and protein profiles between the positive control (10 ng/mL TGF-β3) and peptide group (100 ng/mL SPPEPS), affirming the potential of the peptide for chondroinductivity. Incorporating the SPPEPS peptide in combination with the RGD peptide in pentenoate-functionalized hyaluronic acid (PHA) hydrogels elevated the collagen type II gene expression of the rBMSCs cultured on top of the hydrogels compared to using either peptide alone. The evidence suggests that SPPEPS may be a chondroinductive peptide, which may be enhanced in combination with an adhesion peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ables, J. L., J. J. Breunig, A. J. Eisch, and P. Rakic. Not(ch) just development: Notch signalling in the adult brain. Nat. Rev. Neurosci. 12:269–283, 2011. https://doi.org/10.1038/nrn3024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barry, F., R. E. Boynton, B. Liu, and J. M. Murphy. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res. 268:189–200, 2001. https://doi.org/10.1006/excr.2001.5278.

    Article  CAS  PubMed  Google Scholar 

  3. Burdick, J. A., R. L. Mauck, J. H. Gorman, and R. C. Gorman. Acellular biomaterials: an evolving alternative to cell-based therapies. Sci. Transl. Med. 5:176ps174, 2013. https://doi.org/10.1126/scitranslmed.3003997.

    Article  CAS  Google Scholar 

  4. Caprini, A., et al. A novel bioactive peptide: assessing its activity over murine neural stem cells and its potential for neural tissue engineering. N Biotechnol. 30:552–562, 2013. https://doi.org/10.1016/j.nbt.2013.03.005.

    Article  CAS  PubMed  Google Scholar 

  5. Ceylan, H., A. B. Tekinay, and M. O. Guler. Selective adhesion and growth of vascular endothelial cells on bioactive peptide nanofiber functionalized stainless steel surface. Biomaterials 32:8797–8805, 2011. https://doi.org/10.1016/j.biomaterials.2011.08.018.

    Article  CAS  PubMed  Google Scholar 

  6. French, M. M., S. Rose, J. Canseco, and K. A. Athanasiou. Chondrogenic differentiation of adult dermal fibroblasts. Ann. Biomed. Eng. 32:50–56, 2004.

    Article  CAS  Google Scholar 

  7. Gray, B. P., and K. C. Brown. Combinatorial peptide libraries: mining for cell-binding peptides. Chem. Rev. 114:1020–1081, 2014. https://doi.org/10.1021/cr400166n.

    Article  CAS  PubMed  Google Scholar 

  8. Itoh, S., et al. GSK-3alpha and GSK-3beta proteins are involved in early stages of chondrocyte differentiation with functional redundancy through RelA protein phosphorylation. j. Biol. Chem. 287:29227–29236, 2012. https://doi.org/10.1074/jbc.M112.372086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kiyotake, E. A., E. C. Beck, and M. S. Detamore. Cartilage extracellular matrix as a biomaterial for cartilage regeneration. Ann. N. Y. Acad. Sci. 1383:139–159, 2016. https://doi.org/10.1111/nyas.13278.

    Article  CAS  PubMed  Google Scholar 

  10. Kiyotake, E. A., A. W. Douglas, E. E. Thomas, S. L. Nimmo, and M. S. Detamore. Development and quantitative characterization of the precursor rheology of hyaluronic acid hydrogels for bioprinting. Acta Biomater. 2019. https://doi.org/10.1016/j.actbio.2019.01.041.

    Article  PubMed  Google Scholar 

  11. Li, A., Y. Wei, C. Hung, and G. Vunjak-Novakovic. Chondrogenic properties of collagen type XI, a component of cartilage extracellular matrix. Biomaterials 173:47–57, 2018. https://doi.org/10.1016/j.biomaterials.2018.05.004.

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y., et al. A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80:423–430, 1995.

    Article  CAS  Google Scholar 

  13. Lin, X., et al. Augmentation of osseous phenotypes in vivo with a synthetic peptide. J Orthop. Res. 25:531–539, 2007. https://doi.org/10.1002/jor.20303.

    Article  CAS  PubMed  Google Scholar 

  14. Lin, X. H., et al. B2A peptide induces chondrogenic differentiation in vitro and enhances cartilage repair in rats. J. Orthop. Res. 30:1221–1228, 2012. https://doi.org/10.1002/jor.22078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, S. Q., et al. Biomimetic hydrogels for chondrogenic differentiation of human mesenchymal stem cells to neocartilage. Biomaterials 31:7298–7307, 2010. https://doi.org/10.1016/j.biomaterials.2010.06.001.

    Article  CAS  PubMed  Google Scholar 

  16. Ludbrook, S. B., S. T. Barry, C. J. Delves, and C. M. Horgan. The integrin alphavbeta3 is a receptor for the latency-associated peptides of transforming growth factors beta1 and beta3. Biochem. J. 369:311–318, 2003. https://doi.org/10.1042/BJ20020809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahzoon, S., and M. S. Detamore. Peptides: drawing inspiration from cell–matrix interactions. Tissue Eng. B Rev. 2018. https://doi.org/10.1089/ten.teb.2018.0003.

    Article  Google Scholar 

  18. Mahzoon, S., T. J. Siahaan, and M. S. Detamore. Bio-Instructive Scaffolds for Musculoskeletal Interfaces. In: Bio-instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine, edited by J. Brown, S. Kumbar, and B. Banik. Amsterdam: Elsevier, 2016.

    Google Scholar 

  19. McAllister, T. N., N. Dusserre, M. Maruszewski, and N. L’Heureux. Cell-based therapeutics from an economic perspective: primed for a commercial success or a research sinkhole? Regen. Med. 3:925–937, 2008. https://doi.org/10.2217/17460751.3.6.925.

    Article  PubMed  Google Scholar 

  20. Mu, D., et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J. Cell Biol. 157:493–507, 2002. https://doi.org/10.1083/jcb.200109100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mummery, C. L., R. P. Davis, and J. E. Krieger. Challenges in using stem cells for cardiac repair. Sci. Transl. Med. 2:27ps17, 2010. https://doi.org/10.1126/scitranslmed.3000558.

    Article  PubMed  Google Scholar 

  22. Munger, J. S., J. G. Harpel, F. G. Giancotti, and D. B. Rifkin. Interactions between growth factors and integrins: latent forms of transforming growth factor-beta are ligands for the integrin alphavbeta1. Mol. Biol. Cell 9:2627–2638, 1998.

    Article  CAS  Google Scholar 

  23. Munger, J. S., et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328, 1999.

    Article  CAS  Google Scholar 

  24. Mwale, F., et al. A synthetic peptide of link protein stimulates the biosynthesis of collagens II, IX and proteoglycan by cells of the intervertebral disc. J. Cell. Biochem. 88:1202–1213, 2003. https://doi.org/10.1002/jcb.10479.

    Article  CAS  PubMed  Google Scholar 

  25. Mwale, F., et al. The efficacy of Link N as a mediator of repair in a rabbit model of intervertebral disc degeneration. Arthritis Res. Ther. 13:R120, 2011. https://doi.org/10.1186/ar3423.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Renner, J. N., Y. Kim, and J. C. Liu. Bone morphogenetic protein-derived peptide promotes chondrogenic differentiation of human mesenchymal stem cells. Tissue Eng. Pt A 18:2581–2589, 2012. https://doi.org/10.1089/ten.tea.2011.0400.

    Article  CAS  Google Scholar 

  27. Roberts, A. B., et al. Mesoderm induction in Xenopus laevis distinguishes between the various TGF-beta isoforms. Growth Factors 3:277–286, 1990.

    Article  CAS  Google Scholar 

  28. Shukla, A., et al. TGF-beta signalling is regulated by Schnurri-2-dependent nuclear translocation of CLIC4 and consequent stabilization of phospho-Smad2 and 3. Nat. Cell Biol. 11:777–784, 2009. https://doi.org/10.1038/ncb1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Svensen, N., J. G. Walton, and M. Bradley. Peptides for cell-selective drug delivery. Trends Pharmacol. Sci. 33:186–192, 2012. https://doi.org/10.1016/j.tips.2012.02.002.

    Article  CAS  PubMed  Google Scholar 

  30. Tamamura, Y., et al. Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J. Biol. Chem. 280:19185–19195, 2005. https://doi.org/10.1074/jbc.M414275200.

    Article  CAS  PubMed  Google Scholar 

  31. Townsend, J. M., et al. Superior calvarial bone regeneration using pentenoate-functionalized hyaluronic acid hydrogels with devitalized tendon particles. Acta Biomater. 71:148–155, 2018. https://doi.org/10.1016/j.actbio.2018.02.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verrecchio, A., et al. Design of peptides with high affinities for heparin and endothelial cell proteoglycans. J. Biol. Chem. 275:7701–7707, 2000. https://doi.org/10.1074/Jbc.275.11.7701.

    Article  CAS  PubMed  Google Scholar 

  33. Wei, Y., Y. Ji, L. Xiao, Q. Lin, and J. Ji. Different complex surfaces of polyethyleneglycol (PEG) and REDV ligand to enhance the endothelial cells selectivity over smooth muscle cells. Colloids surf. B 84:369–378, 2011. https://doi.org/10.1016/j.colsurfb.2011.01.028.

    Article  CAS  Google Scholar 

  34. Wei, Y., et al. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials 34:2588–2599, 2013. https://doi.org/10.1016/j.biomaterials.2012.12.036.

    Article  CAS  PubMed  Google Scholar 

  35. Wojtowicz, A. M., et al. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31:2574–2582, 2010. https://doi.org/10.1016/j.biomaterials.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  36. Wu, D., and W. Pan. GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem. Sci. 35:161–168, 2010. https://doi.org/10.1016/j.tibs.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  37. Xiao, Y., E. A. Friis, S. H. Gehrke, and M. S. Detamore. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus. Tissue Eng. Part B Rev. 19:403–412, 2013. https://doi.org/10.1089/ten.TEB.2012.0461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu, H. G., and W. Chen. Expression and significance of ENPP1, TNAP and ANK proteins in the degeneration of endplate chondrocytes in rats. Zhonghua Yi Xue Za Zhi 91:189–192, 2011.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Emi Kiyotake for assistance with preparing the manuscript. The authors acknowledge Dr. Susan Nimmo at the University of Oklahoma Magnetic Resonance Facility for help with conducting NMR. The authors acknowledge a potential conflict of interest as the authors (S.M. and M.D.) are actively pursuing intellectual property protection of the SPPEPS peptide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Detamore.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 206 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahzoon, S., Townsend, J.M., Lam, T.N. et al. Effects of a Bioactive SPPEPS Peptide on Chondrogenic Differentiation of Mesenchymal Stem Cells. Ann Biomed Eng 47, 2308–2321 (2019). https://doi.org/10.1007/s10439-019-02306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02306-0

Keywords

Navigation