Advertisement

Inhibition of the Prostaglandin EP-1 Receptor in Periosteum Progenitor Cells Enhances Osteoblast Differentiation and Fracture Repair

  • Marina Feigenson
  • Jennifer H. Jonason
  • Jie Shen
  • Alayna E. Loiselle
  • Hani A. Awad
  • Regis J. O’KeefeEmail author
Bioengineering and Enabling Technologies
  • 99 Downloads

Abstract

Fracture healing is a complex and integrated process that involves mesenchymal progenitor cell (MPC) recruitment, proliferation and differentiation that eventually results in bone regeneration. Prostaglandin E2 (PGE2) is an important regulator of bone metabolism and has an anabolic effect on fracture healing. Prior work from our laboratory showed EP1−/− mice have enhanced fracture healing, stronger cortical bones, higher trabecular bone volume and increased in vivo bone formation. We also showed that bone marrow MSCs from EP1−/− mice exhibit increased osteoblastic differentiation in vitro. In this study we investigate the changes in the periosteal derived MPCs (PDMPCs), which are crucial for fracture repair, upon EP1 deletion. EP1−/− PDMPCs exhibit increased numbers of total (CFU-F) and osteoblastic colonies (CFU-O) as well as enhanced osteoblastic and chondrogenic differentiation. Moreover, we tested the possible therapeutic application of a specific EP1 receptor antagonist to accelerate fracture repair. Our findings showed that EP1 antagonist administration to wild type mice in the early stages of repair similarly resulted in enhanced CFU-F, CFU-O, and osteoblast differentiation in PDMPCs and resulted in enhanced fracture callus formation at 10 days post fracture and increased bone volume and improved biomechanical healing of femur fractures at 21 days post fracture.

Keywords

EP1 Periosteum progenitor cells Osteogenic differentiation and bone fracture 

Notes

Acknowledgments

Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number R01AR048681 (RJO).

References

  1. 1.
    Abe, T., A. Kunz, M. Shimamura, P. Zhou, J. Anrather, and C. Iadecola. The neuroprotective effect of prostaglandin E2 EP1 receptor inhibition has a wide therapeutic window, is sustained in time and is not sexually dimorphic. J. Cereb. Blood Flow Metab. 29(1):66–72, 2009.Google Scholar
  2. 2.
    Allen, M. R., J. M. Hock, and D. B. Burr. Periosteum: biology, regulation, and response to osteoporosis therapies. Bone 35(5):1003–1012, 2004.Google Scholar
  3. 3.
    Anderson, P., A. B. Carrillo-Galvez, A. Garcia-Perez, M. Cobo, and F. Martin. CD105 (endoglin)-negative murine mesenchymal stromal cells define a new multipotent subpopulation with distinct differentiation and immunomodulatory capacities. PLoS ONE 8(10):e76979, 2013.Google Scholar
  4. 4.
    Asai, S., S. Otsuru, M. E. Candela, L. Cantley, K. Uchibe, T. J. Hofmann, K. Zhang, K. L. Wapner, L. J. Soslowsky, E. M. Horwitz, and M. Enomoto-Iwamoto. Tendon progenitor cells in injured tendons have strong chondrogenic potential: the CD105-negative subpopulation induces chondrogenic degeneration. Stem Cells 32(12):3266–3277, 2014.Google Scholar
  5. 5.
    Ashman, O., and A. M. Phillips. Treatment of non-unions with bone defects: which option and why? Injury 44(Suppl 1):S43–S45, 2013.Google Scholar
  6. 6.
    Bai, X. M., H. Jiang, J. X. Ding, T. Peng, J. Ma, Y. H. Wang, L. Zhang, H. Zhang, and J. Leng. Prostaglandin E2 upregulates survivin expression via the EP1 receptor in hepatocellular carcinoma cells. Life Sci. 86(5–6):214–223, 2010.Google Scholar
  7. 7.
    Balakumaran, A., P. J. Mishra, E. Pawelczyk, S. Yoshizawa, B. J. Sworder, N. Cherman, S. A. Kuznetsov, P. Bianco, N. Giri, S. A. Savage, G. Merlino, B. Dumitriu, C. E. Dunbar, N. S. Young, B. P. Alter, and P. G. Robey. Bone marrow skeletal stem/progenitor cell defects in dyskeratosis congenita and telomere biology disorders. Blood 125(5):793–802, 2015.Google Scholar
  8. 8.
    Bianco, P., X. Cao, P. S. Frenette, J. J. Mao, P. G. Robey, P. J. Simmons, and C. Y. Wang. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19(1):35–42, 2013.Google Scholar
  9. 9.
    Bianco, P., S. A. Kuznetsov, M. Riminucci, and P. Gehron Robey. Postnatal skeletal stem cells. Methods Enzymol. 419:117–148, 2006.Google Scholar
  10. 10.
    Bianco, P., P. G. Robey, and P. J. Simmons. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2(4):313–319, 2008.Google Scholar
  11. 11.
    Brochhausen, C., P. Neuland, C. J. Kirkpatrick, R. M. Nusing, and G. Klaus. Cyclooxygenases and prostaglandin E2 receptors in growth plate chondrocytes in vitro and in situ—prostaglandin E2 dependent proliferation of growth plate chondrocytes. Arthritis Res Ther 8(3):R78, 2006.Google Scholar
  12. 12.
    Chan, C. K., P. Lindau, W. Jiang, J. Y. Chen, L. F. Zhang, C. C. Chen, J. Seita, D. Sahoo, J. B. Kim, A. Lee, S. Park, D. Nag, Y. Gong, S. Kulkarni, C. A. Luppen, A. A. Theologis, D. C. Wan, A. DeBoer, E. Y. Seo, J. D. Vincent-Tompkins, K. Loh, G. G. Walmsley, D. L. Kraft, J. C. Wu, M. T. Longaker, and I. L. Weissman. Clonal precursor of bone, cartilage, and hematopoietic niche stromal cells. Proc Natl Acad Sci USA 110(31):12643–12648, 2013.Google Scholar
  13. 13.
    Chan, C. K., E. Y. Seo, J. Y. Chen, D. Lo, A. McArdle, R. Sinha, R. Tevlin, J. Seita, J. Vincent-Tompkins, T. Wearda, W. J. Lu, K. Senarath-Yapa, M. T. Chung, O. Marecic, M. Tran, K. S. Yan, R. Upton, G. G. Walmsley, A. S. Lee, D. Sahoo, C. J. Kuo, I. L. Weissman, and M. T. Longaker. Identification and specification of the mouse skeletal stem cell. Cell 160(1–2):285–298, 2015.Google Scholar
  14. 14.
    Chapple, C. R., P. Abrams, K. E. Andersson, P. Radziszewski, T. Masuda, M. Small, T. Kuwayama, and S. Deacon. Phase II study on the efficacy and safety of the EP1 receptor antagonist ONO-8539 for nonneurogenic overactive bladder syndrome. J. Urol. 191(1):253–260, 2014.Google Scholar
  15. 15.
    Coleman, R. A., W. L. Smith, and S. Narumiya. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46(2):205–229, 1994.Google Scholar
  16. 16.
    Colnot, C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 24(2):274–282, 2009.Google Scholar
  17. 17.
    Del Toro, Jr., F., V. L. Sylvia, S. R. Schubkegel, R. Campos, D. D. Dean, B. D. Boyan, and Z. Schwartz. Characterization of prostaglandin E(2) receptors and their role in 24,25-(OH)(2)D(3)-mediated effects on resting zone chondrocytes. J. Cell Physiol. 182(2):196–208, 2000.Google Scholar
  18. 18.
    Einhorn, T. A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355(Suppl):S7–S21, 1998.Google Scholar
  19. 19.
    Einhorn, T. A. The science of fracture healing. J. Orthop. Trauma 19(10 Suppl):S4–S6, 2005.Google Scholar
  20. 20.
    Fayaz, H. C., P. V. Giannoudis, M. S. Vrahas, R. M. Smith, C. Moran, H. C. Pape, C. Krettek, and J. B. Jupiter. The role of stem cells in fracture healing and nonunion. Int. Orthop. 35(11):1587–1597, 2011.Google Scholar
  21. 21.
    Feigenson, M., R. A. Eliseev, J. H. Jonason, B. N. Mills, and R. J. O’Keefe. PGE2 receptor subtype 1 (EP1) regulates mesenchymal stromal cell osteogenic differentiation by modulating cellular energy metabolism. J. Cell. Biochem. 118(12):4383–4393, 2017.Google Scholar
  22. 22.
    Fujita, D., N. Yamashita, S. Iita, H. Amano, S. Yamada, and K. Sakamoto. Prostaglandin E2 induced the differentiation of osteoclasts in mouse osteoblast-depleted bone marrow cells. Prostaglandins Leukot. Essent. Fatty Acids 68(5):351–358, 2003.Google Scholar
  23. 23.
    Fukumoto, K., N. Takagi, R. Yamamoto, Y. Moriyama, S. Takeo, and K. Tanonaka. Prostanoid EP1 receptor antagonist reduces blood–brain barrier leakage after cerebral ischemia. Eur. J. Pharmacol. 640(1–3):82–86, 2010.Google Scholar
  24. 24.
    Gerstenfeld, L. C., D. M. Cullinane, G. L. Barnes, D. T. Graves, and T. A. Einhorn. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J. Cell. Biochem. 88(5):873–884, 2003.Google Scholar
  25. 25.
    Giannoudis, P. V., D. A. MacDonald, S. J. Matthews, R. M. Smith, A. J. Furlong, and P. De Boer. Nonunion of the femoral diaphysis. The influence of reaming and non-steroidal anti-inflammatory drugs. J. Bone Jt Surg. Br. 82(5):655–658, 2000.Google Scholar
  26. 26.
    Granero-Molto, F., J. A. Weis, M. I. Miga, B. Landis, T. J. Myers, L. O’Rear, L. Longobardi, E. D. Jansen, D. P. Mortlock, and A. Spagnoli. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27(8):1887–1898, 2009.Google Scholar
  27. 27.
    Guan, Y., Y. Zhang, J. Wu, Z. Qi, G. Yang, D. Dou, Y. Gao, L. Chen, X. Zhang, L. S. Davis, M. Wei, X. Fan, M. Carmosino, C. Hao, J. D. Imig, R. M. Breyer, and M. D. Breyer. Antihypertensive effects of selective prostaglandin E2 receptor subtype 1 targeting. J. Clin. Investig. 117(9):2496–2505, 2007.Google Scholar
  28. 28.
    Hall, A., S. H. Brown, C. Budd, N. M. Clayton, G. M. Giblin, P. Goldsmith, T. G. Hayhow, D. N. Hurst, A. Naylor, D. Anthony Rawlings, T. Scoccitti, A. W. Wilson, and W. J. Winchester. Discovery of GSK345931A: an EP(1) receptor antagonist with efficacy in preclinical models of inflammatory pain. Bioorg. Med. Chem. Lett. 19(2):497–501, 2009.Google Scholar
  29. 29.
    Hallinan, E. A., T. J. Hagen, R. K. Husa, S. Tsymbalov, S. N. Rao, J. P. vanHoeck, M. F. Rafferty, A. Stapelfeld, M. A. Savage, and M. Reichman. N-substituted dibenzoxazepines as analgesic PGE2 antagonists. J. Med. Chem. 36(22):3293–3299, 1993.Google Scholar
  30. 30.
    Holmes, C., T. S. Khan, C. Owen, N. Ciliberti, M. D. Grynpas, and W. L. Stanford. Longitudinal analysis of mesenchymal progenitors and bone quality in the stem cell antigen-1-null osteoporotic mouse. J. Bone Miner. Res. 22(9):1373–1386, 2007.Google Scholar
  31. 31.
    Hori, T., T. Oka, M. Hosoi, and S. Aou. Pain modulatory actions of cytokines and prostaglandin E2 in the brain. Ann. N. Y. Acad. Sci. 840:269–281, 1998.Google Scholar
  32. 32.
    Ishibashi, O., M. Ikegame, F. Takizawa, T. Yoshizawa, M. A. Moksed, F. Iizawa, H. Mera, A. Matsuda, and H. Kawashima. Endoglin is involved in BMP-2-induced osteogenic differentiation of periodontal ligament cells through a pathway independent of Smad-1/5/8 phosphorylation. J. Cell. Physiol. 222(2):465–473, 2010.Google Scholar
  33. 33.
    James, A. W. Review of signaling pathways governing MSC osteogenic and adipogenic differentiation. Scientifica (Cairo) 2013:684736, 2013.Google Scholar
  34. 34.
    Jeffcoach, D. R., V. G. Sams, C. M. Lawson, B. L. Enderson, S. T. Smith, H. Kline, P. B. Barlow, D. R. Wylie, L. A. Krumenacker, J. C. McMillen, J. Pyda, and B. J. Daley. Nonsteroidal anti-inflammatory drugs’ impact on nonunion and infection rates in long-bone fractures. J Trauma Acute Care Surg. 76(3):779–783, 2014.Google Scholar
  35. 35.
    Kondo, T., H. Sei, T. Yamasaki, T. Tomita, Y. Ohda, T. Oshima, H. Fukui, J. Watari, and H. Miwa. A novel prostanoid EP1 receptor antagonist, ONO-8539, reduces acid-induced heartburn symptoms in healthy male volunteers: a randomized clinical trial. J Gastroenterol 2017.  https://doi.org/10.1007/s00535-017-1308-3.Google Scholar
  36. 36.
    Kuznetsov, S. A., P. H. Krebsbach, K. Satomura, J. Kerr, M. Riminucci, D. Benayahu, and P. G. Robey. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12(9):1335–1347, 1997.Google Scholar
  37. 37.
    Kuznetsov, S. A., M. H. Mankani, P. Bianco, and P. G. Robey. Enumeration of the colony-forming units-fibroblast from mouse and human bone marrow in normal and pathological conditions. Stem Cell Res. 2(1):83–94, 2009.Google Scholar
  38. 38.
    Levi, B., D. C. Wan, J. P. Glotzbach, J. Hyun, M. Januszyk, D. Montoro, M. Sorkin, A. W. James, E. R. Nelson, S. Li, N. Quarto, M. Lee, G. C. Gurtner, and M. T. Longaker. CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1) signaling. J. Biol. Chem. 286(45):39497–39509, 2011.Google Scholar
  39. 39.
    Li, X., C. C. Pilbeam, L. Pan, R. M. Breyer, and L. G. Raisz. Effects of prostaglandin E2 on gene expression in primary osteoblastic cells from prostaglandin receptor knockout mice. Bone 30(4):567–573, 2002.Google Scholar
  40. 40.
    Mafi, R., S. Hindocha, P. Mafi, M. Griffin, and W. S. Khan. Sources of adult mesenchymal stem cells applicable for musculoskeletal applications—a systematic review of the literature. Open Orthop. J. 5(Suppl 2):242–248, 2011.Google Scholar
  41. 41.
    Malmberg, A. B., M. F. Rafferty, and T. L. Yaksh. Antinociceptive effect of spinally delivered prostaglandin E receptor antagonists in the formalin test on the rat. Neurosci. Lett. 173(1–2):193–196, 1994.Google Scholar
  42. 42.
    Miki, T., M. Matsunami, S. Nakamura, H. Okada, H. Matsuya, and A. Kawabata. ONO-8130, a selective prostanoid EP1 receptor antagonist, relieves bladder pain in mice with cyclophosphamide-induced cystitis. Pain 152(6):1373–1381, 2011.Google Scholar
  43. 43.
    Minami, T., H. Nakano, T. Kobayashi, Y. Sugimoto, F. Ushikubi, A. Ichikawa, S. Narumiya, and S. Ito. Characterization of EP receptor subtypes responsible for prostaglandin E2-induced pain responses by use of EP1 and EP3 receptor knockout mice. Br. J. Pharmacol. 133(3):438–444, 2001.Google Scholar
  44. 44.
    Murao, H., K. Yamamoto, S. Matsuda, and H. Akiyama. Periosteal cells are a major source of soft callus in bone fracture. J. Bone Miner. Metab. 31(4):390–398, 2013.Google Scholar
  45. 45.
    Nakayama, Y., K. Omote, T. Kawamata, and A. Namiki. Role of prostaglandin receptor subtype EP1 in prostaglandin E2-induced nociceptive transmission in the rat spinal dorsal horn. Brain Res. 1010(1–2):62–68, 2004.Google Scholar
  46. 46.
    Negishi, M., Y. Sugimoto, and A. Ichikawa. Molecular mechanisms of diverse actions of prostanoid receptors. Biochim. Biophys. Acta 1259(1):109–119, 1995.Google Scholar
  47. 47.
    O’Connor, J. P., M. B. Manigrasso, B. D. Kim, and S. Subramanian. Fracture healing and lipid mediators. Bonekey Rep. 3:517, 2014.Google Scholar
  48. 48.
    Ono, K., T. Akatsu, T. Murakami, M. Nishikawa, M. Yamamoto, N. Kugai, K. Motoyoshi, and N. Nagata. Important role of EP4, a subtype of prostaglandin (PG) E receptor, in osteoclast-like cell formation from mouse bone marrow cells induced by PGE2. J. Endocrinol. 158(3):R1–R5, 1998.Google Scholar
  49. 49.
    Owen, M., and A. J. Friedenstein. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136:42–60, 1988.Google Scholar
  50. 50.
    Pekcec, A., B. Unkruer, J. Schlichtiger, J. Soerensen, A. M. Hartz, B. Bauer, E. A. van Vliet, J. A. Gorter, and H. Potschka. Targeting prostaglandin E2 EP1 receptors prevents seizure-associated P-glycoprotein up-regulation. J. Pharmacol. Exp. Ther. 330(3):939–947, 2009.Google Scholar
  51. 51.
    Praemer, A., S. Furner, and D. P. Rice. Musculoskeletal Conditions in the United States. Rosemont, IL: American Academy of Orthopaedic Surgeons, 1999.Google Scholar
  52. 52.
    Raisz, L. G. Physiologic and pathologic roles of prostaglandins and other eicosanoids in bone metabolism. J. Nutr. 125(7 Suppl):2024S–2027S, 1995.Google Scholar
  53. 53.
    Raisz, L. G. Prostaglandins and bone: physiology and pathophysiology. Osteoarthr. Cartil. 7(4):419–421, 1999.Google Scholar
  54. 54.
    Reynolds, D. G., S. Shaikh, M. O. Papuga, A. L. Lerner, R. J. O’Keefe, E. M. Schwarz, and H. A. Awad. muCT-based measurement of cortical bone graft-to-host union. J. Bone Miner. Res. 24(5):899–907, 2009.Google Scholar
  55. 55.
    Shamir, D., S. Keila, and M. Weinreb. A selective EP4 receptor antagonist abrogates the stimulation of osteoblast recruitment from bone marrow stromal cells by prostaglandin E2 in vivo and in vitro. Bone 34(1):157–162, 2004.Google Scholar
  56. 56.
    Simon, A. M., M. B. Manigrasso, and J. P. O’Connor. Cyclo-oxygenase 2 function is essential for bone fracture healing. J. Bone Miner. Res. 17(6):963–976, 2002.Google Scholar
  57. 57.
    Singh, A. K., and A. Sinha. Percutaneous autologous bone marrow injections for delayed or non-union of bones. J. Orthop. Surg. (Hong Kong) 21(2):267, 2013.Google Scholar
  58. 58.
    Stock, J. L., K. Shinjo, J. Burkhardt, M. Roach, K. Taniguchi, T. Ishikawa, H. S. Kim, P. J. Flannery, T. M. Coffman, J. D. McNeish, and L. P. Audoly. The prostaglandin E2 EP1 receptor mediates pain perception and regulates blood pressure. J. Clin. Investig. 107(3):325–331, 2001.Google Scholar
  59. 59.
    Suda, M., K. Tanaka, K. Natsui, T. Usui, I. Tanaka, M. Fukushima, C. Shigeno, J. Konishi, S. Narumiya, A. Ichikawa, and N. Nakao. Prostaglandin E receptor subtypes in mouse osteoblastic cell line. Endocrinology 137(5):1698–1705, 1996.Google Scholar
  60. 60.
    Sugimoto, Y., and S. Narumiya. Prostaglandin E receptors. J. Biol. Chem. 282(16):11613–11617, 2007.Google Scholar
  61. 61.
    Suzawa, T., C. Miyaura, M. Inada, T. Maruyama, Y. Sugimoto, F. Ushikubi, A. Ichikawa, S. Narumiya, and T. Suda. The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 141(4):1554–1559, 2000.Google Scholar
  62. 62.
    Tsutsumi, R., C. Xie, X. Wei, M. Zhang, X. Zhang, L. M. Flick, E. M. Schwarz, and R. J. O’Keefe. PGE2 signaling through the EP4 receptor on fibroblasts upregulates RANKL and stimulates osteolysis. J. Bone Miner. Res. 24(10):1753–1762, 2009.Google Scholar
  63. 63.
    Ueno, M., K. Uchida, M. Takaso, H. Minehara, K. Suto, N. Takahira, R. Steck, M. A. Schuetz, and M. Itoman. Distribution of bone marrow-derived cells in the fracture callus during plate fixation in a green fluorescent protein-chimeric mouse model. Exp. Anim. 60(5):455–462, 2011.Google Scholar
  64. 64.
    Weinreb, M., D. Shamir, M. Machwate, G. A. Rodan, S. Harada, and S. Keila. Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot. Essent. Fatty Acids 75(2):81–90, 2006.Google Scholar
  65. 65.
    Xie, C., B. Liang, M. Xue, A. S. Lin, A. Loiselle, E. M. Schwarz, R. E. Guldberg, R. J. O’Keefe, and X. Zhang. Rescue of impaired fracture healing in COX-2−/− mice via activation of prostaglandin E2 receptor subtype 4. Am. J. Pathol. 175(2):772–785, 2009.Google Scholar
  66. 66.
    Xu, H. H., L. Zhao, and M. D. Weir. Stem cell-calcium phosphate constructs for bone engineering. J. Dent. Res. 89(12):1482–1488, 2010.Google Scholar
  67. 67.
    Zhang, M., M. Feigenson, T. J. Sheu, H. A. Awad, E. M. Schwarz, J. H. Jonason, A. E. Loiselle, and R. J. O’Keefe. Loss of the PGE2 receptor EP1 enhances bone acquisition, which protects against age and ovariectomy-induced impairments in bone strength. Bone 72:92–100, 2015.Google Scholar
  68. 68.
    Zhang, M., H. C. Ho, T. J. Sheu, M. D. Breyer, L. M. Flick, J. H. Jonason, H. A. Awad, E. M. Schwarz, and R. J. O’Keefe. EP1(−/−) mice have enhanced osteoblast differentiation and accelerated fracture repair. J. Bone Miner. Res. 26(4):792–802, 2011.Google Scholar
  69. 69.
    Zhang, X., A. Naik, C. Xie, D. Reynolds, J. Palmer, A. Lin, H. Awad, R. Guldberg, E. Schwarz, and R. O’Keefe. Periosteal stem cells are essential for bone revitalization and repair. J. Musculoskelet. Neuronal Interact. 5(4):360–362, 2005.Google Scholar
  70. 70.
    Zhang, X., C. Xie, A. S. Lin, H. Ito, H. Awad, J. R. Lieberman, P. T. Rubery, E. M. Schwarz, R. J. O’Keefe, and R. E. Guldberg. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J. Bone Miner. Res. 20(12):2124–2137, 2005.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Developmental BiologyHarvard School of Dental MedicineBostonUSA
  2. 2.Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal ResearchUniversity of Rochester School of Medicine and DentistryRochesterUSA
  3. 3.Department of Orthopaedic SurgeryWashington University School of MedicineSt. LouisUSA
  4. 4.Department of Biomedical Engineering, Center for Musculoskeletal ResearchUniversity of Rochester School of Medicine and DentistryRochesterUSA

Personalised recommendations