Skip to main content
Log in

Development of Zinc Chelating Resin Polymer Beads for the Removal of Cell-Free Hemoglobin

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Red blood cell (RBC) hemolysis is one of the most common storage lesions in packed RBCs (pRBC). Older units of pRBCs, especially those > 21 days old, have increasing levels of hemolysis leading to increased oxidative stress and premature platelet activation. This effect can mostly be attributed to the increase of cell-free hemoglobin (Hb). Therefore, removal of cell-free Hb from pRBCs prior to transfusion could mitigate these deleterious effects. We propose a new method for the removal of Hb from pRBCs using zinc beads. Prepared Hb solutions and pRBCs were treated with zinc beads using two different protocols. UV–Vis spectrophotometry was used to determine Hb concentrations, before and after treatment. Experiments were run in triplicate and paired t tests were used to determine significant differences between groups. Zinc beads removed on average 94% of cell-free Hb within 15 min and 78% Hb from pRBCs (p < 0.0001), demonstrating a maximum binding capacity ~ 66.2 ± 0.7 mg Hb/mL beads. No differences in RBC morphology or deformability were observed after treatment. This study demonstrates the feasibility of using zinc beads for the rapid and targeted removal of Hb from pRBC units. Further investigation is needed to scale this method for large volume removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aliyu, Z. Y., A. R. Tumblin, and G. J. Kato. Current therapy of sickle cell disease. Haematologica 91:7–10, 2006.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Belanger, A. M., C. Keggi, T. Kanias, M. T. Gladwin, and D. B. Kim-Shapiro. Effects of nitric oxide and its congeners on sickle red blood cell deformability. Transfusion 55:2464–2472, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bennett-Guerrero, E., B. S. Kirby, H. Zhu, A. E. Herman, N. Bandarenko, and T. J. McMahon. Randomized study of washing 40- to 42-day-stored red blood cells. Transfusion 54:2544–2552, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blood Product Administration. Blood Transfusion. Washington, DC: NCLEX RN Mastery, 2019.

    Google Scholar 

  5. Chung, K. W., S. V. Basavaraju, Y. Mu, K. L. van Santen, K. A. Haass, R. Henry, J. Berger, and M. J. Kuehnert. Declining blood collection and utilization in the United States. Transfusion 56:2184–2192, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  6. CytoSorb. Broad cytokine and toxin reduction to control deadly inflammation CytoSorbents.com. New York: CytoSorbents, 2018.

    Google Scholar 

  7. D’Alessandro, A., G. Liumbruno, G. Grazzini, and L. Zolla. Red blood cell storage: the story so far. Blood Transfusion 8:82–88, 2010.

    PubMed  PubMed Central  Google Scholar 

  8. Donadee, C., N. J. Raat, T. Kanias, J. Tejero, J. S. Lee, E. E. Kelley, X. Zhao, C. Liu, H. Reynolds, I. Azarov, S. Frizzell, E. M. Meyer, A. D. Donnenberg, L. Qu, D. Triulzi, D. B. Kim-Shapiro, and M. T. Gladwin. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 124:465–476, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Flegel, W. A., C. Natanson, and H. G. Klein. Does prolonged storage of red blood cells cause harm? Br J Haematol 165:3–16, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Glynn, S. A., H. G. Klein, and P. M. Ness. The red blood cell storage lesion: the end of the beginning. Transfusion 56:1462–1468, 2016.

    Article  PubMed  Google Scholar 

  11. Hansen, A. L., T. R. Turner, J. D. R. Kurach, and J. P. Acker. Quality of red blood cells washed using a second wash sequence on an automated cell processor. Transfusion 55:2415–2421, 2015.

    Article  CAS  PubMed  Google Scholar 

  12. Helms, C., M. Marvel, W. Zhao, M. Stahle, R. Vest, G. Kato, J. Lee, G. Christ, M. Gladwin, R. Hantgan, and D. Kim-Shapiro. Mechanisms of hemolysis-associated platelet activation. J. Thromb. Hemost. 11:2148–2154, 2013.

    Article  CAS  Google Scholar 

  13. Huisjes, R., A. Bogdanova, W. W. van Solinge, R. M. Schiffelers, L. Kaestner, and R. van Wijk. Squeezing for life—properties of red blood cell deformability. Front Physiol 9:656, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jensen, F. Nitric oxide formation from nitrite in zebrafish. J. Exp. Biol. 210:3387–3394, 2007.

    Article  CAS  PubMed  Google Scholar 

  15. Khanal, G., R. A. Huynh, K. Torabian, H. Xia, E. Voros, and S. S. Shevkoplyas. Towards bedside washing of stored red blood cells: a prototype of a simple apparatus based on microscale sedimentation in normal gravity. Vox Sang 113:31–39, 2018.

    Article  CAS  PubMed  Google Scholar 

  16. Kim-Shapiro, D., J. Lee, and M. Gladwin. Storage lesion: role of red cell breakdown. Transfusion 51:844–851, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lagerberg, J. W., H. Korsten, P. F. Van Der Meer, and D. De Korte. Prevention of red cell storage lesion: a comparison of five different additive solutions. Blood Transfus. 15:456–462, 2017.

    PubMed  PubMed Central  Google Scholar 

  18. Marschner, S., and R. Goodrich. Pathogen reduction technology treatment of platelets, plasma and whole blood using riboflavin and UV light. Transfus. Med. Hemother. 38:8–18, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Osei-Hwedieh, D. O., T. Kanias, C. S. Croix, M. Jessup, Z. Xiong, D. Sinchar, J. Franks, Q. Xu, E. M. Noveli, J. T. Sertorio, K. Potoka, R. J. Binder, S. Basu, A. M. Belanger, D. B. Kim-Shapiro, D. Triulzi, J. S. Lee, and M. T. Gladwin. Sickle cell trait increases red blood cell storage hemolysis and post-transfusion clearance in mice. EBioMedicine 11:239–248, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Plum, L. M., L. Rink, and H. Haase. The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rifkind, J. M., and J. M. Heim. Interaction of zinc and hemoglobin: binding of zinc and the oxygen affinity. Biochemistry 16:4438–4443, 1977.

    Article  CAS  PubMed  Google Scholar 

  22. Schaer, D. J., P. W. Buehler, A. I. Alayash, J. D. Belcher, and G. M. Vercellotti. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121:1276–1284, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmidt, A., M. Refaai, S. Kirkley, and N. Blumberg. Proven and potential clinical benefits of washing red blood cells before transfusion: current perspectives. Int. J. Clin. Transfus. Med. 4:79–88, 2016.

    Article  Google Scholar 

  24. Simms, K., N. Wajih, J. Cardenas, D. B. Kim-Shapiro, and E. Rahbar. Studies of in vitro hemolysis-induced platelet activation in co-transfused packed red blood cells and platelets, 2018 (submitted).

  25. Singhal, R., G. K. Annarapu, A. Pandey, S. Chawla, A. Ojha, A. Gupta, M. A. Cruz, T. Seth, and P. Guchhait. Hemoglobin interaction with GP1b alpha induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis. Haematologica 100:1526–1533, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. United States Environmental Protection Agency, Clement International Corporation, Syracuse Research Corporation, and United States Agency for toxic substances and disease registry. Toxicological Profile for Zinc. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, p. 17, 1994.

    Google Scholar 

  27. Van Reen, R. Zinc Toxicity in Man and Experimental Species. Bethesda: Naval Medical Research Center, p. 18, 2019.

    Google Scholar 

  28. Warner, M. A., I. J. Welsby, P. J. Norris, C. C. Silliman, S. Armour, E. D. Wittwer, P. J. Santrach, L. A. Meade, L. M. Liedl, C. M. Nieuwenkamp, B. Douthit, C. M. van Buskirk, P. J. Schulte, R. E. Carter, and D. J. Kor. Point-of-care washing of allogeneic red blood cells for the prevention of transfusion-related respiratory complications (WAR-PRC): a protocol for a multicenter randomised clinical trial in patients undergoing cardiac surgery. BMJ Open 7:e016398, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Which agarose (sepharose) to choose? 2, 4, or 6%? Crosslinked? In: A Discussion of Protein Research G Biosciences, 2014.

  30. Zinc chelating resin (cat. # 786-287). edited by G-Biosciences, 2018.

  31. Zinc, Serum Online. Mayo Foundation for Medical Education and Research Please provide complete details of references [30, 31] if possible.

Download references

Acknowledgments

Funding for this study was provided by the National Science Foundation (NSF) REU Site: Imaging and Mechanics-based Projects on Accidental Cases of Trauma Impact, Award No. 1559700 (E. Rebholz summer REU intern), and National Institutes of Health (NIH). Specifically, NIH Subcontract (NIH U01 HL077863-11, Subaward No. 0010612B, Subcontract PI: E. Rahbar) and NIH Grant R01 HL098032 (D. Kim-Shapiro). Dr. Rahbar’s startup funds were also used to support this study.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaheh Rahbar.

Additional information

Associate Editor Dan Elson oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simms, K., Rebholz, E., Mayberry, R.M. et al. Development of Zinc Chelating Resin Polymer Beads for the Removal of Cell-Free Hemoglobin. Ann Biomed Eng 47, 1470–1478 (2019). https://doi.org/10.1007/s10439-019-02249-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02249-6

Keywords

Navigation