Skip to main content
Log in

Non-Destructive Reflectance Mapping of Collagen Fiber Alignment in Heart Valve Leaflets

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Collagen fibers are the primary structural elements that define many soft-tissue structure and mechanical function relationships, so that quantification of collagen organization is essential to many disciplines. Current tissue-level collagen fiber imaging techniques remain limited in their ability to quantify fiber organization at macroscopic spatial scales and multiple time points, especially in a non-contacting manner, requiring no modifications to the tissue, and in near real-time. Our group has previously developed polarized spatial frequency domain imaging (pSFDI), a reflectance imaging technique that rapidly and non-destructively quantifies planar collagen fiber orientation in superficial layers of soft tissues over large fields-of-view. In this current work, we extend the light scattering models and image processing techniques to extract a critical measure of the degree of collagen fiber alignment, the normalized orientation index (NOI), directly from pSFDI data. Electrospun fiber samples with architectures similar to many collagenous soft tissues and known NOI were used for validation. An inverse model was then used to extract NOI from pSFDI measurements of aortic heart valve leaflets and clearly demonstrated changes in degree of fiber alignment between opposing sides of the sample. These results show that our model was capable of extracting absolute measures of degree of fiber alignment in superficial layers of heart valve leaflets with only general a priori knowledge of fiber properties, providing a novel approach to rapid, non-destructive study of microstructure in heart valve leaflets using a reflectance geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Allen, A. C., E. Barone, O. Cody, K. Crosby, L. J. Suggs, and J. Zoldan. Electrospun poly(N-isopropyl acrylamide)/poly(caprolactone) fibers for the generation of anisotropic cell sheets. Biomater. Sci. 5:1661–1669, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amoroso, N. J., A. D’Amore, Y. Hong, W. R. Wagner, and M. S. Sacks. Elastomeric electrospun polyurethane scaffolds: the interrelationship between fabrication conditions, fiber topology, and mechanical properties. Adv. Mater. 23:106–111, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ayoub, S., K. C. Tsai, A. H. Khalighi, and M. S. Sacks. The three-dimensional microenvironment of the mitral valve: insights into the effects of physiological loads. Cell. Mol. Bioeng. 11:291–306, 2018.

    Article  Google Scholar 

  4. Bodenschatz, N., P. Krauter, A. Liemert, J. Wiest, and A. Kienle. Model-based analysis on the influence of spatial frequency selection in spatial frequency domain imaging. Appl. Opt. 54:6725–6731, 2015.

    Article  CAS  PubMed  Google Scholar 

  5. Bohren, C. F., and D. R. Huffman. Absorption and Scattering of Light by Small Particles. New York: Wiley, 2008.

    Google Scholar 

  6. Chenault, D. B., and R. A. Chipman. Measurements of linear diattenuation and linear retardance spectra with a rotating sample spectropolarimeter. Appl. Opt. 32:3513–3519, 1993.

    Article  CAS  PubMed  Google Scholar 

  7. Courtney, T., M. S. Sacks, J. Stankus, J. Guan, and W. R. Wagner. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 27:3631–3638, 2006.

    CAS  PubMed  Google Scholar 

  8. Cuccia, D. J., F. Bevilacqua, A. J. Durkin, F. R. Ayers, and B. J. Tromberg. Quantitation and mapping of tissue optical properties using modulated imaging. J. Biomed. Opt. 14:024012–024013, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cuccia, D. J., F. Bevilacqua, A. J. Durkin, and B. J. Tromberg. Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain. Opt. Lett. 30:1354–1356, 2005.

    Article  PubMed  Google Scholar 

  10. Cuccia, D. J., F. Bevilacqua, A. J. Durkin, and B. J. Tromberg. Depth-sectioned imaging and quantitative analysis in turbid media using spatially modulated illumination. In: Biomedical Topical Meeting. Optical Society of America, 2004, p. FF5.

  11. D’Amore, A., J. A. Stella, W. R. Wagner, and M. S. Sacks. Characterization of the complete fiber network topology of planar fibrous tissues and scaffolds. Biomaterials 31:5345–5354, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deitzel, J., J. Kleinmeyer, D. Harris, and N. B. Tan. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42:261–272, 2001.

    Article  CAS  Google Scholar 

  13. Doshi, J., and D. H. Reneker. Electrospinning process and applications of electrospun fibers. In: Industry Applications Society Annual Meeting, 1993. Conference Record of the 1993 IEEE. IEEE, 1993, pp. 1698–1703.

  14. Eckert, C. E., R. Fan, B. Mikulis, M. Barron, C. A. Carruthers, V. M. Friebe, N. R. Vyavahare, and M. S. Sacks. On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta biomater. 9:4653–4660, 2013.

    Article  CAS  PubMed  Google Scholar 

  15. Fratzl, P. Collagen: structure and mechanics, an introduction. In: Collagen. New York: Springer, 2008, pp. 1–13.

  16. Gelse, K., E. Pöschl, and T. Aigner. Collagens—structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 55:1531–1546, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Ghosh, N., and I. A. Vitkin. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16:110801–11080129, 2011.

    Article  PubMed  Google Scholar 

  18. Ghosh, N. , I. A. Vitkin, and M. F. Wood. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J. Biomed. Opt. 13:044014–044036, 2008.

    Article  Google Scholar 

  19. Gilbert, T. W., S. Wognum, E. M. Joyce, D. O. Freytes, M. S. Sacks, and S. F. Badylak. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix. Biomaterials 29:4775–4782, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gioux, S., A. Mazhar, D. J. Cuccia, A. J. Durkin, B. J. Tromberg, and J. V. Frangioni. Three-dimensional surface profile intensity correction for spatially modulated imaging. J. Biomed. Opt. 14:034045, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goth, W., J. Lesicko, M. S. Sacks, and J. W. Tunnell. Optical-based analysis of soft tissue structures. Annu. Rev. Biomed. Eng. 2016. https://doi.org/10.1146/annurev-bioeng-071114-040625.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Guo, X., M. F. Wood, and A. Vitkin. A Monte Carlo study of penetration depth and sampling volume of polarized light in turbid media. Opt. Commun. 281:380–387, 2008.

    Article  CAS  Google Scholar 

  23. Holzapfel, G. A. Biomechanics of soft tissue. Handb. Mater. Behav. Models 3:1049–1063, 2001.

    Google Scholar 

  24. Hotaling, N. A., K. Bharti, H. Kriel, and C. G. Simon. DiameterJ: a validated open source nanofiber diameter measurement tool. Biomaterials 61:327–338, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hulst, H. C., and H. Van De Hulst. Light Scattering by Small Particles. Mineola: Courier Dover Publications, 1957.

    Google Scholar 

  26. Jacques, S. L., and J. C. Ramella-Roman. Polarized Light Imaging of Tissues. Royal Society of Chemistry, 2004, pp. 591–607.

  27. Jammalamadaka, S. R., and A. Sengupta. Topics in Circular Statistics. Singapore: World Scientific, 2001.

    Book  Google Scholar 

  28. Joyce, E. M., J. Liao, F. J. Schoen, J. E. Mayer, Jr., and M. S. Sacks. Functional collagen fiber architecture of the pulmonary heart valve cusp. Ann. Thorac. Surg. 87:1240–1249, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kemp, N., H. Zaatari, J. Park, H. G. Rylander, III, and T. Milner. Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt. Express 13:4611–4628, 2005.

    Article  PubMed  Google Scholar 

  30. Liu, B., M. Harman, S. Giattina, D. L. Stamper, C. Demakis, M. Chilek, S. Raby, and M. E. Brezinski. Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography. Appl. Opt. 45:4464–4479, 2006.

    Article  PubMed  Google Scholar 

  31. Lu, S.-Y., and R. A. Chipman. Interpretation of Mueller matrices based on polar decomposition. JOSA A 13:1106–1113, 1996.

    Article  Google Scholar 

  32. Mark, J. E. Physical Properties of Polymers Handbook. New York: Springer, 2007.

    Book  Google Scholar 

  33. Martin, C., and W. Sun. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. A 100:1591–1599, 2012.

    Article  CAS  PubMed  Google Scholar 

  34. Mega, Y., M. Robitaille, R. Zareian, J. McLean, J. Ruberti, and C. DiMarzio. Quantification of lamellar orientation in corneal collagen using second harmonic generation images. Opt. Lett. 37:3312–3314, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Misfeld, M., and H.-H. Sievers. Heart valve macro- and microstructure. Philos. Trans. R. Soc. Lond. B 362:1421–1436, 2007.

    Article  Google Scholar 

  36. Oppenheim, A. V., and R. W. Schafer. Discrete-Time Signal Processing. Upper Saddle River: Prentice Hall, pp. 86–87, 1989.

    Google Scholar 

  37. Parry, D. A. The molecular fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys. Chem. 29:195–209, 1988.

    Article  CAS  PubMed  Google Scholar 

  38. Qi, J., and D. S. Elson. Mueller polarimetric imaging for surgical and diagnostic applications: a review. J. Biophotonics 10:950–982, 2017.

    Article  PubMed  Google Scholar 

  39. Sacks, M. S. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar collagenous tissues. J. Biomech. Eng. 125:280–287, 2003.

    Article  PubMed  Google Scholar 

  40. Sacks, M. S., D. B. Smith, and E. D. Hiester. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25:678–689, 1997.

    Article  CAS  PubMed  Google Scholar 

  41. Samuels, R. J. Small angle light scattering from deformed spherulites. Theory and its experimental verification. J. Polym. Sci. C 1966. https://doi.org/10.1002/polc.5070130105.

    Article  Google Scholar 

  42. Stella, J. A., and M. S. Sacks. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J. Biomech. Eng. 129:757–766, 2007.

    Article  PubMed  Google Scholar 

  43. Stoller, P., K. M. Reiser, P. M. Celliers, and A. M. Rubenchik. Polarization-modulated second harmonic generation in collagen. Biophys. J. 82:3330–3342, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun, M., H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, and H. Ma. Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters. Biomed. Opt. Express 5:4223–4234, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tower, T. T., M. R. Neidert, and R. T. Tranquillo. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng. 30:1221–1233, 2002.

    Article  PubMed  Google Scholar 

  46. Van Krevelen, D. W., and K. Te Nijenhuis. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions. Amsterdam: Elsevier, 2009.

    Book  Google Scholar 

  47. Wiest, J., N. Bodenschatz, A. Brandes, A. Liemert, and A. Kienle. Polarization influence on reflectance measurements in the spatial frequency domain. Phys. Med. Biol. 60:5717, 2015.

    Article  CAS  PubMed  Google Scholar 

  48. Yang, B., J. Lesicko, M. Sharma, M. Hill, M. S. Sacks, and J. W. Tunnell. Polarized light spatial frequency domain imaging for non-destructive quantification of soft tissue fibrous structures. Biomed. Opt. Express 6:1520–1533, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  49. York, T., L. Kahan, S. P. Lake, and V. Gruev. Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue. J. Biomed. Opt. 19:066011, 2014.

    Article  PubMed  Google Scholar 

  50. Zhou, W.-S., and X.-Y. Su. A direct mapping algorithm for phase-measuring profilometry. J. Mod. Opt. 41:89–94, 1994.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the National Heart, Lung, and Blood Institute of the National Institutes of Health (awards RO1-HL108330 and RO1-HL129077), the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (Award T32-EB007505), and the Cancer Prevention and Research Institute of Texas (Award RP-130702). The authors would also like to thank Mason Dana for his contributions to data collection and instrumentation troubleshooting, and acknowledge the Microscopy and Imaging Facility of the Institute for Cellular and Molecular Biology at The University of Texas at Austin for use of their electron microscope facilities. There are no conflicts of interest from financial or other commercial benefits related to the development of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Tunnell.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The full derivation of our polarized light model begins from Eq. (4):

$$\vec{S}_{\text{out}} = \tau_{\text{sys}} M_{\text{p}} R_{\text{p}} ( - (\theta \pm \varphi ))M_{\text{s}} R_{\text{p}} ((\theta \pm \varphi ))M_{\text{p}} \vec{S}_{\text{in}} .$$
(4)

The initial Stokes vector describing the incident light (\(\vec{S}_{\text{in}}\)), along with the Mueller matrix components representing the polarizer (Mp) and rotational transformations (Rp), are defined as follows:

$$\vec{S}_{\text{in}} = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \right),$$
(A1)
$$M_{\text{p}} = \frac{1}{2}\left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 & 1 \\ 1 & 1 \\ \end{array} } & {\begin{array}{*{20}c} 0 & 0 \\ 0 & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} 0 & 0 \\ 0 & 0 \\ \end{array} } \\ \end{array} } \right),$$
(A2)
$$R_{\text{p}} ((\theta \pm \varphi )) = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 1 & 0 \\ 0 & { \cos (2(\theta \pm \varphi ))} \\ \end{array} } & {\begin{array}{*{20}c} 0 & 0 \\ { \sin (2(\theta \pm \varphi ))} & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 & { - \sin (2(\theta \pm \varphi ))} \\ 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} { - \cos (2(\theta \pm \varphi ))} & 0 \\ 0 & 1 \\ \end{array} } \\ \end{array} } \right).$$
(A3)

The Mueller matrix for the sample (Ms) is given as the special case scattering T-matrix derived for normally incident light scattering from infinitely long cylinders:

$$M_{\text{s}} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {M_{11} } & {M_{12} } \\ {M_{21} } & {M_{22} } \\ \end{array} } & {\begin{array}{*{20}c} {M_{13} } & {M_{14} } \\ {M_{23} } & {M_{24} } \\ \end{array} } \\ {\begin{array}{*{20}c} {M_{31} } & {M_{32} } \\ {M_{41} } & {M_{42} } \\ \end{array} } & {\begin{array}{*{20}c} {M_{33} } & {M_{34} } \\ {M_{43} } & {M_{44} } \\ \end{array} } \\ \end{array} } \right] = \frac{2}{\pi x}\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {T_{11} } & {T_{12} } \\ {T_{12} } & {T_{11} } \\ \end{array} } & {\begin{array}{*{20}c} 0 & 0 \\ 0 & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 & 0 \\ 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} {T_{33} } & {T_{34} } \\ { - T_{34} } & {T_{33} } \\ \end{array} } \\ \end{array} } \right].$$
(A4)

The full solution for the T-matrix elements, along with efficient computational algorithms, has been described extensively by Bohren and Huffman.5 The inputs required to solve for T11, T12, T33, and T34 are the relative refractive index of the cylinder and the medium (m), the size parameter (x), and the system collection angles (ψ). Plugging (A1)–(A4) into Eq. (4) can be shown to simplify to:

$$\vec{S}_{\text{out}} = \frac{{\tau_{\text{sys}} }}{4}\left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {M_{11} (1 + \cos^{2} (2(\theta \pm \varphi ))) + 2M_{12} \cos (2(\theta \pm \varphi )) + M_{33} \sin^{2} (2(\theta \pm \varphi ))} \\ {M_{11} (1 + \cos^{2} (2(\theta \pm \varphi ))) + 2M_{12} \cos (2(\theta \pm \varphi )) + M_{33} \sin^{2} (2(\theta \pm \varphi ))} \\ \end{array} } \\ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \\ \end{array} } \right].$$
(A5)

(A5) shows that the intensity response detected by the camera is now entirely dependent on the linear polar response, and the Stokes vector can therefore be collapsed into Eq. (6).

Appendix B

To allow more rapid fitting, a modified but mathematically identical form of Eq. (6) is used. Each sinusoidal term includes a non-linear phase offset. For linearized fitting, it is transformed using the identity \(a \cdot \sin (\theta ) + b \cdot \cos (\theta ) = c \cdot \cos (\theta + \varphi ),\) where \(c = \sqrt {a^{2} + b^{2} }\) and \(\varphi = a\tan 2(a,\;b)\). This results in a Fourier expansion form of Eq. (6):

$$I(\theta ) = a_{0} + b_{1} \sin (2\theta ) + b_{2} \cos (2\theta ) + b_{3} \sin (4\theta ) + b_{4} \cos (4\theta ).$$
(A6)

In this form, a linearized representation of the reflectance is I = Sb, where I is the detected reflectance intensity, S is the Fourier expansion representation of the model in (A6), and b is a vector containing the five transformed model coefficients from (A6). Solving this system of equations by b = S\I allows extraction of the coefficients by Gaussian elimination (Matlab function mldivide). Subsequently, a 1 s fitting time was achieved for a 1.5-megapixel image, compared to several hours with the lsqnonlin fitting algorithms for the original equation containing a non-linear phase offset term. After fitting, the original form of the model coefficients and phase offset were recovered using the same identities.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goth, W., Potter, S., Allen, A.C.B. et al. Non-Destructive Reflectance Mapping of Collagen Fiber Alignment in Heart Valve Leaflets. Ann Biomed Eng 47, 1250–1264 (2019). https://doi.org/10.1007/s10439-019-02233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02233-0

Keywords

Navigation