Spatiotemporal Complexity of the Aortic Sinus Vortex as a Function of Leaflet Calcification

Abstract

Several studies have shown the variation of aortic sinus structures’ hemodynamics with different flow and geometric characteristics. They have also correlated aortic sinus hemodynamics with the progression and evolution of calcific aortic valve disease (CAVD). This study aims at visualizing aortic sinus fluid structure variations as functions of different leaflet calcification degrees and assessing their potential relationship with CAVD. A degenerated 23 mm Carpentier-Edwards Perimount Magna valve extracted from a redo-surgery patient was implanted in an aortic root model and tested in a pulse duplicator left heart simulator. The valve has 3 leaflets with 3 different levels of calcium distribution: mild, moderate and severe. High-speed imaging and particle image velocimetry were performed to assess sinus vortices, leaflet tip position and velocity along with shear stress. Results have shown that (a) aortic sinus vortices initiation, entrapment and evolution varied with different calcified leaflet exposure; (b) higher velocities in the sinus were calculated with the mildly calcified leaflet compared to the moderately and severely calcified ones; (c) during systole, the mildly calcified leaflet sinus case shows the most spread-out and higher ranges of shear stress probabilities and highest magnitudes going from (− 1.5 to + 1.8 Pa) compared with (− 1.0 to + 1.0 Pa) for moderately and severely calcified leaflets. The higher the calcification degree the lower the shear stress range and likelihoods of having higher shear stress. This holds in diastole as well. This study shows the impact of calcification on the aortic sinus flow structures.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. 1.

    Balachandran, K., P. Sucosky, and A. P. Yoganathan. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int. J. Inflamm. 2011. https://doi.org/10.4061/2011/263870.

    Article  Google Scholar 

  2. 2.

    Bapat, V., Valve in Valve app. 2015(2.0), 2015

  3. 3.

    Baumgartner, H., J. Hung, J. Bermejo, J. B. Chambers, A. Evangelista, B. P. Griffin, B. Iung, C. M. Otto, P. A. Pellikka, and M. Quiñones. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 22(1):1–23, 2009.

    Article  PubMed  Google Scholar 

  4. 4.

    Bellhouse, B. Velocity and pressure distributions in the aortic valve. J. Fluid Mech. 37(3):587–600, 1969.

    Article  Google Scholar 

  5. 5.

    Bellhouse, B. J., and L. Talbot. The fluid mechanics of the aortic valve. J. Fluid Mech. 35(4):721–735, 1969.

    Article  Google Scholar 

  6. 6.

    Butcher, J. T., S. Tressel, T. Johnson, D. Turner, G. Sorescu, H. Jo, and R. M. Nerem. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler. Thromb. Vasc. Biol. 26(1):69–77, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    David, T. E., and J. Ivanov. Is degenerative calcification of the native aortic valve similar to calcification of bioprosthetic heart valves? J. Thorac. Cardiovasc. Surg. 126(4):939–941, 2003.

    Article  PubMed  Google Scholar 

  8. 8.

    Fukui, T., and K. Morinishi. Influence of vortices in the sinus of valsalva on local wall shear stress distribution. Int. J. Life Sci. Med. Res. 3(3):94, 2013.

    Article  Google Scholar 

  9. 9.

    Green, S. Fluid Vortices, Vol. 30. New York: Springer, 2012.

    Google Scholar 

  10. 10.

    Hatoum, H., and L. Dasi. Sinus hemodynamics in representative stenotic native bicuspid and tricuspid aortic valves: an in vitro study. Fluids 3(3):56, 2018.

    Article  Google Scholar 

  11. 11.

    Hatoum, H., and L. P. Dasi. Reduction of pressure gradient and turbulence using vortex generators in prosthetic heart valves. Ann. Biomed. Eng. 2018. https://doi.org/10.1007/s10439-018-02128-6.

    Article  PubMed  Google Scholar 

  12. 12.

    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann Thorac. Surg. 106:70–78, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 157:540–549, 2018.

    Article  PubMed  Google Scholar 

  14. 14.

    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Sinus hemodynamics variation with tilted transcatheter aortic valve deployments. Ann. Biomed. Eng. 47(1):75–84, 2018.

    Article  PubMed  Google Scholar 

  15. 15.

    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 2018. https://doi.org/10.1016/j.jmbbm.2018.06.038.

    Article  PubMed  Google Scholar 

  17. 17.

    Hatoum, H., B. L. Moore, and L. P. Dasi. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 46:2102–2111, 2018.

    Article  PubMed  Google Scholar 

  18. 18.

    Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154(1):32–43, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An In-vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 156:1837–1848, 2018.

    Article  PubMed  Google Scholar 

  20. 20.

    Hjortnaes, J., and E. Aikawa, Calcific aortic valve disease. In: Aortic Valve. InTech, 2011

  21. 21.

    Keele, K. D. Leonardo da vinci as physiologist. Postgrad. Med. J. 28(324):521, 1952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lincoln, J., and V. Garg. Etiology of valvular heart disease. Circulation 78(8):1801–1807, 2014.

    Article  CAS  Google Scholar 

  23. 23.

    Moore, B., and L. P. Dasi. Spatiotemporal complexity of the aortic sinus vortex. Exp. Fluids 55(7):1770, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43(9):2231–2241, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Otto, C. M., J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. O’brien. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90(2):844–853, 1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Peacock, J. A. An in vitro study of the onset of turbulence in the sinus of valsalva. Circul. Res. 67:448–460, 1990.

    Article  CAS  Google Scholar 

  27. 27.

    Peskin, C., and A. Wolfe. The aortic sinus vortex. In: Federation Proceedings, 1978

  28. 28.

    Rajamannan, N. M., R. O. Bonow, and S. H. Rahimtoola. Calcific aortic stenosis: an update. Nat. Rev. Cardiol. 4(5):254, 2007.

    Article  CAS  Google Scholar 

  29. 29.

    Reul, H., N. Talukder, and E. Mu. Fluid mechanics of the natural mitral valve. J. Biomech. 14(5):361–372, 1981.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Sathyamurthy, I., and S. Alex. Calcific aortic valve disease: is it another face of atherosclerosis? Indian Heart J. 67(5):503–506, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Skowasch, D., S. Schrempf, N. Wernert, M. Steinmetz, A. Jabs, I. Tuleta, U. Welsch, C. J. Preusse, J. A. Likungu, and A. Welz. Cells of primarily extravalvular origin in degenerative aortic valves and bioprostheses. Eur. Heart J. 26(23):2576–2580, 2005.

    Article  PubMed  Google Scholar 

  32. 32.

    Stewart, B. F., D. Siscovick, B. K. Lind, J. M. Gardin, J. S. Gottdiener, V. E. Smith, D. W. Kitzman, and C. M. Otto. Clinical factors associated with calcific aortic valve disease. J. Am. Coll. Cardiol. 29(3):630–634, 1997.

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Sun, L., S. Chandra, and P. Sucosky. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS ONE 7(10):e48843, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Tennekes, H., J. L. Lumley, and J. Lumley. A first course in turbulence. Cambridge: MIT press, 1972.

    Google Scholar 

  35. 35.

    Thubrikar, M., L. Bosher, and S. Nolan. The mechanism of opening of the aortic valve. J. Thorac. Cardiovasc. Surg. 77(6):863–870, 1979.

    CAS  PubMed  Google Scholar 

  36. 36.

    Toninato, R., J. Salmon, F. M. Susin, A. Ducci, and G. Burriesci. Physiological vortices in the sinuses of Valsalva: an in vitro approach for bio-prosthetic valves. J. Biomech. 49(13):2635–2643, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Towler, D. A. Molecular and cellular aspects of calcific aortic valve disease. Circ. Res. 113(2):198–208, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Van Steenhoven, A., P. Veenstra, and R. Reneman. The effect of some hemodynamic factors on the behaviour of the aortic valve. J. Biomech. 15(12):941–950, 1982.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

Dr. Dasi reports having a patent application filed on novel polymeric valves, vortex generators and superhydrophobic surfaces.

Funding

The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Peter E. McHugh oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video 1: Streak plots of the 3 different sinuses throughout the cardiac cycle. Supplementary material 1 (MP4 3787 kb)

Video 2: En-face imaging of the valve throughout the cardiac cycle. Supplementary material 2 (MP4 4031 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hatoum, H., Dasi, L.P. Spatiotemporal Complexity of the Aortic Sinus Vortex as a Function of Leaflet Calcification. Ann Biomed Eng 47, 1116–1128 (2019). https://doi.org/10.1007/s10439-019-02224-1

Download citation

Keywords

  • Calcific aortic valve disease
  • CAVD
  • Sinus hemodynamics
  • Aortic sinus vortex
  • Shear stress