Skip to main content

Advertisement

Log in

A Bag of Wavelet Features for Snore Sound Classification

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Snore sound (SnS) classification can support a targeted surgical approach to sleep related breathing disorders. Using machine listening methods, we aim to find the location of obstruction and vibration within a subject’s upper airway. Wavelet features have been demonstrated to be efficient in the recognition of SnSs in previous studies. In this work, we use a bag-of-audio-words approach to enhance the low-level wavelet features extracted from SnS data. A Naïve Bayes model was selected as the classifier based on its superiority in initial experiments. We use SnS data collected from 219 independent subjects under drug-induced sleep endoscopy performed at three medical centres. The unweighted average recall achieved by our proposed method is 69.4%, which significantly (\(p<0.005,\) one-tailed z-test) outperforms the official baseline (58.5%), and beats the winner (64.2%) of the INTERSPEECH ComParE Challenge 2017 Snoring sub-challenge. In addition, the conventionally used features like formants, mel-scale frequency cepstral coefficients, subband energy ratios, spectral frequency features, and the features extracted by the openSMILE toolkit are compared with our proposed feature set. The experimental results demonstrate the effectiveness of the proposed method in SnS classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Amiriparian, S., M. Gerczuk, S. Ottl, N. Cummins, M. Freitag, S. Pugachevskiy, A. Baird, and B. Schuller. Snore sound classification using image-based deep spectrum features. In: Proceedings of INTERSPEECH, 2017, Stockholm, Sweden, pp. 3512–3516.

  2. Arthur, D. and S. Vassilvitskii. K-means++: the advantages of careful seeding. In: Proceedings of ACM–SIAM SODA, 2007, New Orleans, LA, USA, pp. 1027–1035.

  3. Azarbarzin, A. and Moussavi, Z. Automatic and unsupervised snore sound extraction from respiratory sound signals. IEEE Trans. Biomed. Eng. 58(5):1156–1162, 2011.

    Article  PubMed  Google Scholar 

  4. Coifman, R. R., Y. Meyer, S. Quake, and V. Wickerhauser. Signal processing and compression with wavelet packets. In: Wavelets and Their Applications, edited by J. S. Byrnes, J. L. Byrnes, K. A. Hargreaves, and K. Berry. Dordrecht: Springer, 1994, pp. 363–379.

    Google Scholar 

  5. Coifman, R. R. and M. V. Wickerhauser. Entropy-based algorithms for best basis selection. IEEE Trans. Inf. Theory 38(2):713–718, 1992.

    Article  Google Scholar 

  6. De Bruijn, N. Uncertainty principles in Fourier analysis. In: Inequalities (Proceedings of Symposium of Wright-Patterson Air Force Base, Ohio, 1965). New York: Academic , 1967, pp. 57–71.

  7. Deller Jr., J. R., J. H. L. Hansen, and J. G. Proakis. Discrete Time Processing of Speech Signals. New York: Wiley-IEEE Press, 1999.

    Book  Google Scholar 

  8. Demin, H., Y. Jingying, W. J. Y. Qingwen, L. Yuhua, and W. Jiangyong. Determining the site of airway obstruction in obstructive sleep apnea with airway pressure measurements during sleep. Laryngoscope 112(11):2081–2085, 2002.

    Article  PubMed  Google Scholar 

  9. Dietterich, T. G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7):1895–1923, 1998.

    Article  CAS  PubMed  Google Scholar 

  10. Elwali, A. and Z. Moussavi. Obstructive sleep apnea screening and airway structure characterization during wakefulness using tracheal breathing sounds. Ann. Biomed. Eng., 45(3):839–850, 2017.

    Article  PubMed  Google Scholar 

  11. Eyben, F. Real-time Speech and Music Classification by Large Audio Feature Space Extraction. Doctoral Thesis, Springer, Cham, 2015.

  12. Eyben, F., F. Weninger, F. Groß, and B. Schuller. Recent developments in openSMILE, the Munich open-source multimedia feature extractor. In: Proceedings of ACM MM, Barcelona, Catalunya, Spain. ACM, 2013, pp. 835–838.

  13. Freitag, M., S. Amiriparian, N. Cummins, M. Gerczuk, and B. Schuller. An end-to-evolution hybrid approach for snore sound classification. In: Proceedings of INTERSPEECH, Stockholm, Sweden, 2017, pp. 3507–3511.

  14. Gosztolya, G., R. Busa-Fekete, T. Grósz, and L. Tóth. DNN-based feature extraction and classifier combination for child-directed speech, cold and snoring identification. In: Proceedings of INTERSPEECH, Stockholm, Sweden, 2017, pp. 3522–3526.

  15. Hall, M., E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1):10–18, 2009.

    Article  Google Scholar 

  16. Janott, C., M. Schmitt, Y. Zhang, K. Qian, V. Pandit, Z. Zhang, C. Heiser, W. Hohenhorst, M. Herzog, W. Hemmert, and B. Schuller. Snoring classified: the Munich Passau Snore Sound Corpus. Comput. Biol. Med. 94:106–118, 2018.

    Article  PubMed  Google Scholar 

  17. Janott, C., B. Schuller, and C. Heiser. Acoustic information in snoring noise. HNO 65(2):107–116, 2017.

    Article  CAS  PubMed  Google Scholar 

  18. Kaya, H. and K. A. Alexey. Introducing weighted kernel classifiers for handling imbalanced paralinguistic corpora: snoring, addressee and cold. In: Proceedings of INTERSPEECH, Stockholm, Sweden, 2017, pp. 3527–3531.

  19. Kezirian, E. J., W. Hohenhorst, and N. de Vries. Drug-induced sleep endoscopy: the VOTE classification. Eur. Arch. Oto-Rhino-Laryngol. 268(8):1233–1236, 2011.

    Article  Google Scholar 

  20. Khushaba, R. N., S. Kodagoda, S. Lal, and G. Dissanayake. Driver drowsiness classification using fuzzy wavelet-packet-based feature-extraction algorithm. IEEE Trans. Biomed. Eng. 58(1):121–131, 2011.

    Article  PubMed  Google Scholar 

  21. LeCun, Y., Y. Bengio, and G. Hinton. Deep learning. Nature 521(7553):436–444, 2015.

    Article  CAS  Google Scholar 

  22. Li, K. K. Surgical therapy for adult obstructive sleep apnea. Sleep Med. Rev. 9(3):201–209, 2005.

    Article  CAS  PubMed  Google Scholar 

  23. Lin, H.-C., M. Friedman, H.-W. Chang, and B. Gurpinar. The efficacy of multilevel surgery of the upper airway in adults with obstructive sleep apnea/hypopnea syndrome. Laryngoscope 118(5):902–908, 2008.

    Article  PubMed  Google Scholar 

  24. Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way. Burlington: Elsevier, 2009.

    Google Scholar 

  25. MathWorks. Matlab Wavelet Toolbox. https://www.mathworks.com/products/wavelet.html, 2018.

  26. Mlynczak, M., E. Migacz, M. Migacz, and W. Kukwa. Detecting breathing and snoring episodes using a wireless tracheal sensor-a feasibility study. IEEE J. Biomed. Health Inform. 21(6):1504–1510, 2017.

    Article  PubMed  Google Scholar 

  27. Mokhlesi, B., S. Ham, and D. Gozal. The effect of sex and age on the comorbidity burden of OSA: an observational analysis from a large nationwide US health claims database. Eur. Respir. J. 47(4):1162–1169, 2016.

    Article  PubMed  Google Scholar 

  28. Montazeri, A., E. Giannouli, and Z. Moussavi. Assessment of obstructive sleep apnea and its severity during wakefulness. Ann. Biomed. Eng. 40(4):916–924, 2012.

    Article  PubMed  Google Scholar 

  29. Murty, M. N. and V. S. Devi. Pattern Recognition: An Algorithmic Approach. Dordrecht: Springer, 2011.

    Book  Google Scholar 

  30. Ng, A. K., T. San Koh, U. R. Abeyratne, and K. Puvanendran. Investigation of obstructive sleep apnea using nonlinear mode interactions in nonstationary snore signals. Ann. Biomed. Eng. 37(9):1796–1806, 2009a.

    Article  PubMed  Google Scholar 

  31. Ng, A. K., T. San Koh, E. Baey, T. H. Lee, U. R. Abeyratne, and K. Puvanendran. Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea? Sleep Med. 9(8):894–898, 2008.

    Article  PubMed  Google Scholar 

  32. Ng, A. K., T. San Koh, E. Baey, and K. Puvanendran. Role of upper airway dimensions in snore production: acoustical and perceptual findings. Ann. Biomed. Eng. 37(9):1807–1817, 2009b.

    Article  PubMed  Google Scholar 

  33. Nwe, L. T., D. H. Tran, T. Z. W. Ng, and B. Ma. An integrated solution for snoring sound classification using Bhattacharyya distance based GMM supervectors with SVM, feature selection with random forest and spectrogram with CNN. In: Proceedings of INTERSPEECH, Stockholm, Sweden, 2017, pp. 3467–3471.

  34. O’Shaughnessy, D. Speech Communication: Human and Machine. New York: Addison-Wesley, 1987.

    Google Scholar 

  35. Pancoast, S. and M. Akbacak. Bag-of-audio-words approach for multimedia event classification. In: Proceedings of INTERSPEECH, Portland, OR, USA, 2012, pp. 2105–2108.

  36. Peppard, P. E., T. Young, J. H. Barnet, M. Palta, E. W. Hagen, and K. M. Hla. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 177(9):1006–1014, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pevernagie, D., R. M. Aarts, and M. De Meyer. The acoustics of snoring. Sleep Med. Rev. 14(2):131–144, 2010.

    Article  PubMed  Google Scholar 

  38. Pishro-Nik, H. Introduction to Probability, Statistics, and Random Processes. Electrical and Computer Engineering Educational Materials, 2014. http://scholarworks.umass.edu/ece_ed_materials/1.

  39. Qian, K., C. Janott, V. Pandit, Z. Zhang, C. Heiser, W. Hohenhorst, M. Herzog, W. Hemmert, and B. Schuller. Classification of the excitation location of snore sounds in the upper airway by acoustic multi-feature analysis. IEEE Trans. Biomed. Eng. 64(8):1731–1741, 2017.

    Article  PubMed  Google Scholar 

  40. Qian, K., C. Janott, Z. Zhang, J. Deng, A. Baird, C. Heiser, W. Hohenhorst, M. Herzog, W. Hemmert, and B. Schuller. Teaching machines on snoring: a benchmark on computer audition for snore sound excitation localisation. Arch. Acoust. 43(3):465–475, 2018.

    Google Scholar 

  41. Qian, K., C. Janott, Z. Zhang, C. Heiser, and B. Schuller. Wavelet features for classification of VOTE snore sounds. In: Proceedings of ICASSP, Shanghai, China, 2016, pp. 221–225.

  42. Rao, M. V. A., S. Yadav, and P. Ghosh, Kumar. A dual source-filter model of snore audio for snorer group classification. In: Proceedings of INTERSPEECH, Stockholm, Sweden, 2017, pp. 3502–3506.

  43. Rawat, S., P. F. Schulam, S. Burger, D. Ding, Y. Wang, and F. Metze. Robust audio-codebooks for large-scale event detection in consumer videos. In: Proceedings of INTERSPEECH, Lyon, France, 2013, pp. 2929–2933.

  44. Reda, M., G. J. Gibson, and J. A. Wilson. Pharyngoesophageal pressure monitoring in sleep apnea syndrome. Otolaryngol. Head Neck Surg. 125(4):324–331, 2001.

    Article  CAS  PubMed  Google Scholar 

  45. Schmitt, M., C. Janott, V. Pandit, K. Qian, C. Heiser, W. Hemmert, and B. Schuller. A bag-of-audio-words approach for snore sounds excitation localisation. In: Proceedings of ITG Speech Communication, Paderborn, Germany, 2016a, pp. 230–234.

  46. Schmitt, M., F. Ringeval, and B. Schuller. At the border of acoustics and linguistics: bag-of-audio-words for the recognition of emotions in speech. In: Proceedings of INTERSPEECH, San Francisco, CA, USA, 2016b, pp. 495–499.

  47. Schmitt, M. and B. W. Schuller. openXBOW-introducing the Passau open-source crossmodal bag-of-words toolkit. J. Mach. Learn. Res. 18(96):1–5, 2017.

    Google Scholar 

  48. Schuller, B., S. Steidl, and A. Batliner. The INTERSPEECH 2009 emotion challenge. In: Proceedings of INTERSPEECH, Brighton, UK, 2009, pp. 312–315.

  49. Schuller, B., S. Steidl, A. Batliner, E. Bergelson, J. Krajewski, C. Janott, A. Amatuni, M. Casillas, A. Seidl, M. Soderstrom, S. A. Warlaumont, G. Hidalgo, S. Schnieder, C. Heiser, W. Hohenhorst, M. Herzog, M. Schmitt, K. Qian, Y. Zhang, G. Trigeorgis, P. Tzirakis, and S. Zafeiriou. The INTERSPEECH 2017 computational paralinguistics challenge: addressee, cold and snoring. In: Proceedings of INTERSPEECH, Stockholm, Sweden, 2017, pp. 3442–3446.

  50. Schuller, B., S. Steidl, A. Batliner, A. Vinciarelli, K. Scherer, F. Ringeval, M. Chetouani, F. Weninger, F. Eyben, E. Marchi, M. Mortillaro, H. Salamin, A. Polychroniou, F. Valente, and S. Kim. The INTERSPEECH 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism. In: Proceedings of INTERSPEECH, Lyon, France, 2013, pp. 148–152.

  51. Snell, R. C. and F. Milinazzo. Formant location from LPC analysis data. IEEE Trans. Speech Audio Process., 1(2):129–134, 1993.

    Article  Google Scholar 

  52. Strollo Jr., P. J. and R. M. Rogers. Obstructive sleep apnea. N. Engl. J. Med. 334(2):99–104, 1996.

    Article  PubMed  Google Scholar 

  53. Stuck, B. A. and J. T. Maurer. Airway evaluation in obstructive sleep apnea. Sleep Med. Rev. 12(6):411–436, 2008.

    Article  PubMed  Google Scholar 

  54. Tavarez, D., X. Sarasola, A. Alonso, J. Sanchez, L. Serrano, E. Navas, and I. Hernáez. Exploring fusion methods and feature space for the classification of paralinguistic information. In: Proceedings of INTERSPEECH, Stockholm, Sweden, 2017, pp. 3517–3521.

  55. Vroegop, A. V., O. M. Vanderveken, A. N. Boudewyns, J. Scholman, V. Saldien, K. Wouters, M. J. Braem, P. H. Van de Heyning, and E. Hamans. Drug-induced sleep endoscopy in sleep-disordered breathing: report on 1,249 cases. Laryngoscope 124(3):797–802, 2014.

    Article  PubMed  Google Scholar 

  56. Yadollahi, A., A. Montazeri, A. Azarbarzin, and Z. Moussavi. Respiratory flow-sound relationship during both wakefulness and sleep and its variation in relation to sleep apnea. Ann. Biomed. Eng. 41(3):537–546, 2013.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the China Scholarship Council (CSC), and the European Union’s Seventh Framework under Grant Agreements No. 338164 (ERC StG iHEARu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Qian.

Additional information

Associate Editor Ka-Wai Kwok oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, K., Schmitt, M., Janott, C. et al. A Bag of Wavelet Features for Snore Sound Classification. Ann Biomed Eng 47, 1000–1011 (2019). https://doi.org/10.1007/s10439-019-02217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02217-0

Keywords

Navigation