Skip to main content
Log in

A Numerical Preoperative Planning Model to Predict Arterial Deformations in Endovascular Aortic Aneurysm Repair

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Endovascular aneurysm repair is rapidly emerging as the primary preferred method for treating abdominal aortic aneurysm. In this image-guided interventional procedure, to obtain the roadmap and decrease contrast injections, preoperative CT images are overlaid onto live fluoroscopy images using various 2D/3D image fusion techniques. However, the structural changes due to the insertion of stiff tools degrade the fusion accuracy. To correct the mismatch and quantify the intraoperative deformations, we present a patient-specific biomechanical model of the aorto-iliac structure and its surrounding tissues. The predictive capability of the model was evaluated against intraoperative data for a group of four patients. Incorporating the perivascular tissues into the model significantly improved the results and the mean distance between the real and simulated endovascular tools was 2.99 ± 1.78 mm on the ipsilateral side and 4.59 ± 3.25 mm on the contralateral side. Moreover, the distance between the deformed iliac ostia and their corresponding landmarks on intraoperative images was 2.99 ± 2.48 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Fig. 8

Similar content being viewed by others

References

  1. Arnaoutakis, D. J., M. Zammert, A. Karthikesalingam, and M. Belkin. Endovascular repair of abdominal aortic aneurysms. Best Pract. Res. Clin. Anaesthesiol. 30:331–340, 2016.

    Article  PubMed  Google Scholar 

  2. Bols, J., J. Degroote, B. Trachet, B. Verhegghe, P. Segers, and J. Vierendeels. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J. Comput. Appl. Math. 246:10–17, 2013.

    Article  Google Scholar 

  3. Brown, L. C., E. A. Brown, R. M. Greenhalgh, J. T. Powell, and S. G. Thompson. Renal function and abdominal aortic aneurysm (AAA): the impact of different management strategies on long-term renal function in the UK EndoVascular Aneurysm Repair (EVAR) Trials. Ann. Surg. 251:966–975, 2010.

    Article  PubMed  Google Scholar 

  4. Comley, K., and N. A. Fleck. A micromechanical model for the Young’s modulus of adipose tissue. Int. J. Solids Struct. 47:2982–2990, 2010.

    Article  Google Scholar 

  5. Dalstra, M., R. Huiskes, and L. Van Erning. Development and validation of a three-dimensional finite element model of the pelvic bone. J. Biomech. Eng 37:272–278, 1995.

    Article  Google Scholar 

  6. De Bock, S., F. Iannaccone, G. De Santis, M. De Beule, D. Van Loo, D. Devos, F. Vermassen, P. Segers, and B. Verhegghe. Virtual evaluation of stent graft deployment: a validated modeling and simulation study. J. Mech. Behav. Biomed. Mater. 13:129–139, 2012.

    Article  PubMed  Google Scholar 

  7. Dubuisson M. P. and A. K. Jain. A modified Hausdorff distance for object matching. In: Proceedings of 12th International Conference on Pattern Recognition 1994, pp. 566–568 vol. 561.

  8. Dumenil, A., A. Kaladji, M. Castro, S. Esneault, A. Lucas, M. Rochette, C. Göksu, and P. Haigron. Finite-element-based matching of pre-and intraoperative data for image-guided endovascular aneurysm repair. IEEE Trans. Biomed. Eng. 60:1353–1362, 2013.

    Article  PubMed  Google Scholar 

  9. Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 2013.

    Google Scholar 

  10. Gasser, T. C., G. Görgülü, M. Folkesson, and J. Swedenborg. Failure properties of intraluminal thrombus in abdominal aortic aneurysm under static and pulsating mechanical loads. J. Vasc. Surg. 48:179–188, 2008.

    Article  PubMed  Google Scholar 

  11. Gindre, J., A. Bel-Brunon, A. Kaladji, A. Duménil, M. Rochette, A. Lucas, P. Haigron, and A. Combescure. Finite element simulation of the insertion of guidewires during an EVAR procedure: example of a complex patient case, a first step toward patient-specific parameterized models. Int. J. Num. Methods Biomed. Eng. 31:e02716, 2015.

    Article  Google Scholar 

  12. Gindre, J., A. Bel-Brunon, M. Rochette, A. Lucas, A. Kaladji, P. Haigron, and A. Combescure. Patient-specific finite-element simulation of the insertion of guidewire during an EVAR procedure: guidewire position prediction validation on 28 cases. IEEE Trans. Biomed. Eng. 64:1057–1066, 2017.

    Article  CAS  PubMed  Google Scholar 

  13. Gupta A., S. Sett, S. Varahoor and B. Wolf. Investigation of interaction between guidewire and native vessel using finite element analysis. In: Proceedings of the 2010 Simulia Customer Conference 2010

  14. Hallquist, J. O. LS-DYNA Theory Manual. San Diego: Livermore Software Technology Corporation, pp. 25–31, 2006.

    Google Scholar 

  15. Joldes, G. R., K. Miller, A. Wittek, and B. Doyle. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. J. Mech. Behav. Biomed. Mater. 58:139–148, 2016.

    Article  PubMed  Google Scholar 

  16. Kaladji, A., A. Dumenil, M. Castro, A. Cardon, J.-P. Becquemin, B. Bou-Saïd, A. Lucas, and P. Haigron. Prediction of deformations during endovascular aortic aneurysm repair using finite element simulation. Comput. Med. Imaging Graph. 37:142–149, 2013.

    Article  PubMed  Google Scholar 

  17. Kauffmann, C., F. Douane, E. Therasse, S. Lessard, S. Elkouri, P. Gilbert, N. Beaudoin, M. Pfister, J. F. Blair, and G. Soulez. Source of errors and accuracy of a two-dimensional/three-dimensional fusion road map for endovascular aneurysm repair of abdominal aortic aneurysm. J. Vasc. Interv. Radiol. 26:544–551, 2015.

    Article  PubMed  Google Scholar 

  18. Lessard, S., C. Kauffmann, M. Pfister, G. Cloutier, E. Therasse, J. A. de Guise, and G. Soulez. Automatic detection of selective arterial devices for advanced visualization during abdominal aortic aneurysm endovascular repair. Med. Eng. Phys. 37:979–986, 2015.

    Article  PubMed  Google Scholar 

  19. Lim, J.-H., S.-H. Ong, and W. Xiong. Biomedical Image Understanding: Methods and Applications. New Jersey: Wiley, 2015.

    Book  Google Scholar 

  20. Liu, Y., C. Dang, M. Garcia, H. Gregersen, and G. S. Kassab. Surrounding tissues affect the passive mechanics of the vessel wall: theory and experiment. Am. J. Physiol. Heart Circ. Physiol. 293:H3290–H3300, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Miao, C. Y., and Z. Y. Li. The role of perivascular adipose tissue in vascular smooth muscle cell growth. Br. J. Pharmacol. 165:643–658, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller, K., and J. Lu. On the prospect of patient-specific biomechanics without patient-specific properties of tissues. J. Mech. Behav. Biomed. Mater. 27:154–166, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mohammadi, H., R. Cartier, and R. Mongrain. Review of numerical methods for simulation of the aortic root: present and future directions. Int. J. Comput. Methods Eng. Sci. Mech. 17:182–195, 2016.

    Article  Google Scholar 

  24. Mohammadi, H., R. Cartier, and R. Mongrain. Fiber-reinforced computational model of the aortic root incorporating thoracic aorta and coronary structures. Biomech. and Mode. Mechanobiol. 17:263–283, 2017.

    Article  Google Scholar 

  25. Mohammadi, H., R. Cartier, and R. Mongrain. 3D physiological model of the aortic valve incorporating small coronary arteries. Int. J. Num. Methods Biomed. Eng. 33:e2829, 2017.

    Article  Google Scholar 

  26. Moireau, P., N. Xiao, M. Astorino, C. A. Figueroa, D. Chapelle, C. Taylor, and J.-F. Gerbeau. External tissue support and fluid–structure simulation in blood flows. Biomech. Model. Mechanobiol. 11:1–18, 2012.

    Article  CAS  PubMed  Google Scholar 

  27. Perrin, D., P. Badel, L. Orgeas, C. Geindreau, S. R. du Roscoat, J. N. Albertini, and S. Avril. Patient-specific simulation of endovascular repair surgery with tortuous aneurysms requiring flexible stent-grafts. J. Mech. Behav. Biomed. Mater. 63:86–99, 2016.

    Article  PubMed  Google Scholar 

  28. Rafii-Tari, H., C. J. Payne, and G.-Z. Yang. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann. Biomed. Eng. 42:697–715, 2014.

    Article  PubMed  Google Scholar 

  29. Raghavan, M. L., and D. A. Vorp. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33:475–482, 2000.

    Article  CAS  PubMed  Google Scholar 

  30. Roy, D. Mechanical Simulation of the Endovascular Repair of Abdominal Aortic Aneurysms. Montréal: Université de Montréal, 2015.

    Google Scholar 

  31. Roy, D., G. A. Holzapfel, C. Kauffmann, and G. Soulez. Finite element analysis of abdominal aortic aneurysms: geometrical and structural reconstruction with application of an anisotropic material model. IMA J. Appl. Math. 79:1011–1026, 2014.

    Article  Google Scholar 

  32. Schröder, J. The mechanical properties of guidewires. Part I: Stiffness and torsional strength. Cardiovasc. Intervent. Radiol. 16:43–46, 1993.

    Article  PubMed  Google Scholar 

  33. Sommer, G., M. Eder, L. Kovacs, H. Pathak, L. Bonitz, C. Mueller, P. Regitnig, and G. A. Holzapfel. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 9:9036–9048, 2013.

    Article  CAS  PubMed  Google Scholar 

  34. Toth D., M. Pfister, A. Maier, M. Kowarschik and J. Hornegger. Adaption of 3D Models to 2D X-Ray Images during Endovascular Abdominal Aneurysm Repair. In: Medical Image Computing and Computer-Assisted InterventionMICCAI 20152015, pp. 339–346

  35. Yushkevich, P. A., J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the FQRNT (Fonds de recherche du Québec – Nature et technologies). The research project were funded by the Nature Sciences and Engineering Research Council of Canada (NSERC) collaborative research and development grant, in partnership with Siemens Healthineers, CAE Healthcare, and the Medteq consortium.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mohammadi.

Additional information

Associate Editor Karol Miller oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, H., Lessard, S., Therasse, E. et al. A Numerical Preoperative Planning Model to Predict Arterial Deformations in Endovascular Aortic Aneurysm Repair. Ann Biomed Eng 46, 2148–2161 (2018). https://doi.org/10.1007/s10439-018-2093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2093-8

Keywords

Navigation