Sex Differences in 2-DOF Human Ankle Stiffness in Relaxed and Contracted Muscles

Abstract

Ankle stiffness has been known as one of the most important components contributing to the maintenance of lower body stability during postural balance and locomotion. It has been repeatedly shown that women have lower stability and increased risk of injury when compared to men participating in similar sports activities, yet sex differences in neuromuscular control of the ankle, including the modulation of ankle stiffness, and their contribution to stability remain unknown. To identify sex differences in human ankle stiffness, this study quantified multi-dimensional ankle stiffness in 20 young, healthy men and 20 young, healthy women over a range of ankle muscle contractions, from relaxed to 20% of maximum voluntary co-contraction of ankle muscles. A wearable ankle robot and a system identification method were used to reliably quantify ankle stiffness in a 2-dimensional space spanning the sagittal plane and the frontal plane. In all muscle activation levels, significant sex differences in ankle stiffness were identified in both the sagittal and frontal planes. In the given experimental conditions, ankle stiffness in males was higher than females up to 15.1 and 8.3 Nm/rad in the sagittal plane and the frontal plane, respectively. In addition, sex differences in the spatial structure of ankle stiffness were investigated by quantifying three parameters defining the stiffness ellipse of the ankle: area, aspect ratio, and orientation. In all muscle activation levels, a significant sex difference was identified in the area of stiffness ellipse as expected from the sex difference in the sagittal and frontal planes. However, no statistical sex difference was observed in the aspect ratio and orientation, which would be due to little differences in major anatomical configurations of the ankle joint between sexes. This study, in combination with future studies investigating sex differences during dynamic tasks (e.g. postural balance and locomotion) would serve as a basis to develop a risk assessment tool and sex-specific training programs for efficient ankle injury prevention or rehabilitation.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1.

    Almeida, S. A., D. W. Trone, D. M. Leone, R. A. Shaffer, S. L. Patheal, and K. Long. Gender differences in musculoskeletal injury rates: a function of symptom reporting? Med. Sci. Sports Exerc. 31(12):1807–1812, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Bendat, J., and A. Piersol. Random Data: Analysis and Measurement Process (4th ed.). New York: Wiley, 2010.

    Book  Google Scholar 

  3. 3.

    Beynnon, B. D., I. M. Bernstein, A. Belisle, B. Brattbakk, P. Devanny, R. Risinger, and D. Durant. The effect of estradiol and progesterone on knee and ankle joint laxity. Am. J. Sports Med. 33(9):1298–1304, 2005.

    Article  PubMed  Google Scholar 

  4. 4.

    Beynnon, B. D., P. A. Renstrom, D. M. Alosa, J. F. Baumhauer, and P. M. Vacek. Ankle ligament injury risk factors: a prospective study of college athletes. J. Orthop. Res. 19(2):213–220, 2001.

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Burdet, E., R. Osu, D. W. Franklin, T. E. Milner, and M. Kawato. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862):446–449, 2001.

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Casadio, M., P. G. Morasso, and V. Sanguineti. Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application. Gait Posture 21(4):410–424, 2005.

    Article  PubMed  Google Scholar 

  7. 7.

    Council, N. R. Musculoskeletal disorders and the workplace. Washington, DC: National Academy Press, 2001.

    Google Scholar 

  8. 8.

    Elias, S. R. 10-year trend in USA Cup soccer injuries: 1988-1997. Med. Sci. Sports Exerc. 33(3):359–367, 2001.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Ficanha, E. M., G. Ribeiro, and M. A. Rastgaar. Design and evaluation of a 2-DOF instrumented platform for estimation of the ankle mechanical impedance in the sagittal and frontal planes. IEEE/ASME Trans. Mechatron. 21(5):2531–2542, 2016.

    Article  Google Scholar 

  10. 10.

    Franklin, D. W., G. Liaw, T. E. Milner, R. Osu, E. Burdet, and M. Kawato. Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 27(29):7705–7716, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Gatev, P., S. Thomas, T. Kepple, and M. Hallett. Feedforward ankle strategy of balance during quiet stance in adults. J. Physiol. 514(Pt 3):915–928, 1999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Glenmark, B., M. Nilsson, H. Gao, J. A. Gustafsson, K. Dahlman-Wright, and H. Westerblad. Difference in skeletal muscle function in males vs. females: role of estrogen receptor-beta. Am. J. Physiol. Endocrinol. Metab. 287(6):E1125–E1131, 2004.

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Granata, K. P., D. A. Padua, and S. E. Wilson. Gender differences in active musculoskeletal stiffness. Part II. Quantification of leg stiffness during functional hopping tasks. J. Electromyogr. Kinesiol. 12(2):127–135, 2002.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Granata, K. P., S. E. Wilson, and D. A. Padua. Gender differences in active musculoskeletal stiffness. Part I. Quantification in controlled measurements of knee joint dynamics. J. Electromyogr. Kinesiol. 12(2):119–126, 2002.

    Article  PubMed  Google Scholar 

  15. 15.

    Hansen, A. H., D. S. Childress, S. C. Miff, S. A. Gard, and K. P. Mesplay. The human ankle during walking: implications for design of biomimetic ankle prostheses. J. Biomech. 37(10):1467–1474, 2004.

    Article  PubMed  Google Scholar 

  16. 16.

    Heitz, N. A., P. A. Eisenman, C. L. Beck, and J. A. Walker. Hormonal changes throughout the menstrual cycle and increased anterior cruciate ligament laxity in females. J. Athl. Train. 34(2):144–149, 1999.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hewett, T. E. Neuromuscular and hormonal factors associated with knee injuries in female athletes. Strategies for intervention. Sports Med. 29(5):313–327, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Hill, D. W., and J. C. Smith. Gender difference in anaerobic capacity: role of aerobic contribution. Br. J. Sports Med. 27(1):45–48, 1993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hogan, N. Adaptive-control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29(8):681–690, 1984.

    Article  Google Scholar 

  20. 20.

    Hosea, T. M., C. C. Carey, and M. F. Harrer. The gender issue: epidemiology of ankle injuries in athletes who participate in basketball. Clin. Orthop. Relat. Res. 372:45–49, 2000.

    Article  Google Scholar 

  21. 21.

    Hunter, I. W., and R. E. Kearney. Dynamics of human ankle stiffness—variation with mean ankle torque. J. Biomech. 15(10):747–752, 1982.

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Huston, L. J., and E. M. Wojtys. Neuromuscular performance characteristics in elite female athletes. Am. J. Sports Med. 24(4):427–436, 1996.

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Janssen, I., S. B. Heymsfield, Z. M. Wang, and R. Ross. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J. Appl. Physiol. (1985) 89(1):81–88, 2000.

    Article  CAS  Google Scholar 

  24. 24.

    Kearney, R. E., R. B. Stein, and L. Parameswaran. Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans. Biomed. Eng. 44(6):493–504, 1997.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Kent-Braun, J. A., and A. V. Ng. Specific strength and voluntary muscle activation in young and elderly women and men. J. Appl. Physiol. (1985) 87(1):22–29, 1999.

    Article  CAS  Google Scholar 

  26. 26.

    Kerrigan, D., M. Todd, and C. U. Della. Gender differences in joint biomechanics during walking: normative study in young adults. Am. J. Med. Rehabil. 77(1):2–7, 1998.

    Article  CAS  Google Scholar 

  27. 27.

    Kubo, K., H. Kanehisa, and T. Fukunaga. Gender differences in the viscoelastic properties of tendon structures. Eur. J. Appl. Physiol. 88(6):520–526, 2003.

    Article  PubMed  Google Scholar 

  28. 28.

    Latash, M. L., and V. M. Zatsiorsky. Joint stiffness—myth or reality. Human Mov. Sci. 12(6):653–692, 1993.

    Article  Google Scholar 

  29. 29.

    Lee, H., P. Ho, M. Rastgaar, H. I. Krebs, and N. Hogan. Multivariable static ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22(1):44–52, 2014.

    Article  PubMed  Google Scholar 

  30. 30.

    Lee, H., and N. Hogan. Time-varying ankle mechanical impedance during human locomotion. IEEE Trans. Neural Syst. Rehabil. Eng. 23(5):755–764, 2015.

    Article  PubMed  Google Scholar 

  31. 31.

    Lee, H., H. I. Krebs, and N. Hogan. Multivariable dynamic ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehabil. 22(5):971–981, 2014.

    Article  Google Scholar 

  32. 32.

    Lee, H., H. I. Krebs, and N. Hogan. Multivariable dynamic ankle mechanical impedance with relaxed muscles. IEEE Trans. Neural Syst. Rehabil. Eng. 22(6):1104–1114, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lee, H., E. Rouse, and H. I. Krebs. Summary of human ankle mechanical impedance during walking. IEEE J. Transl. Eng. Health Med. 4:1–7, 2016.

    Article  Google Scholar 

  34. 34.

    Loram, I. D., and M. Lakie. Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J. Physiol. Lond. 545(3):1041–1053, 2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Miller, A. E., J. D. MacDougall, M. A. Tarnopolsky, and D. G. Sale. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 66(3):254–262, 1993.

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Mirbagheri, M. M., H. Barbeau, and R. E. Kearney. Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp. Brain Res. 135(4):423–436, 2000.

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Montgomery, J., and D. Avers. Daniels and Worthingham’s Muscle Testing: Techniques of Manual Examination (8th ed.). Philadelphia: Saunders, 2007.

    Google Scholar 

  38. 38.

    Nalam, V., H. Lee. Design and validation of a multi-axis robotic platform for the characterization of ankle neuromechanics. In: Proceedings of the IEEE International Conference on Robotics and Automation 2017 (ICRA 2017); Singapore.

  39. 39.

    Nalam, V., H. Lee. A new robotic approach to characterize mechanical impedance and energetic passivity of the human ankle during standing. Paper presented at: In: Proceedings of the 39th Annual International Conference of IEEE Engineering Medicine and Biology Society, South Korea, 2017.

  40. 40.

    Neptune, R. R., S. A. Kautz, and F. E. Zajac. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34(11):1387–1398, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Perry, J. Gait Analysis: Normal and Pathologic Functions. New Jersey: Slack Inc., 1992.

    Google Scholar 

  42. 42.

    Quatman, C. E., K. R. Ford, G. D. Myer, M. V. Paterno, and T. E. Hewett. The effects of gender and pubertal status on generalized joint laxity in young athletes. J. Sci. Med. Sport. 11(3):257–263, 2008.

    Article  PubMed  Google Scholar 

  43. 43.

    Ristolainen, L., A. Heinonen, B. Waller, U. M. Kujala, and J. A. Kettunen. Gender differences in sport injury risk and types of inju-ries: a retrospective twelve-month study on cross-country skiers, swimmers, long-distance runners and soccer players. J. Sports Sci. Med. 8(3):443–451, 2009.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Robertson, D. G., and D. A. Winter. Mechanical energy generation, absorption and transfer amongst segments during walking. J. Biomech. 13(10):845–854, 1980.

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Rouse, E. J., R. D. Gregg, L. J. Hargrove, and J. W. Sensinger. The difference between stiffness and quasi-stiffness in the context of biomechanical modeling. IEEE Trans. Biomed. Eng. 60(2):562–568, 2013.

    Article  PubMed  Google Scholar 

  46. 46.

    Rouse, E. J., L. J. Hargrove, E. J. Perreault, and T. A. Kuiken. Estimation of human ankle impedance during the stance phase of walking. IEEE Trans. Neural Syst. Rehabil. Eng. 22(4):870–878, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Shamaei, K., G. S. Sawicki, and A. M. Dollar. Estimation of quasi-stiffness and propulsive work of the human ankle in the stance phase of walking. PLoS ONE 8(3):e59935, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Slauterbeck, J., C. Clevenger, W. Lundberg, and D. M. Burchfield. Estrogen level alters the failure load of the rabbit anterior cruciate ligament. J. Orthop. Res. 17(3):405–408, 1999.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Stefanyshyn, D. J., and B. M. Nigg. Dynamic angular stiffness of the ankle joint during running and sprinting. J. Appl. Biomech. 14(3):292–299, 1998.

    Article  PubMed  Google Scholar 

  50. 50.

    Wilkerson, R. D., and M. A. Mason. Differences in men’s and women’s mean ankle ligamentous laxity. Iowa Orthop. J. 20:46–48, 2000.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Winter, D. A. Human balance and posture control during standing and walking. Gait Posture 3:193–214, 1995.

    Article  Google Scholar 

  52. 52.

    Winter, D. A., A. E. Patla, S. Rietdyk, and M. G. Ishac. Ankle muscle stiffness in the control of balance during quiet standing. J. Neurophysiol. 85(6):2630–2633, 2001.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Zeller, B. L., J. L. McCrory, W. B. Kibler, and T. L. Uhl. Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am. J. Sports Med. 31(3):449–456, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was completed by a support of Virginia G. Piper Foundation, adidas-ASU Global Sport Alliance, and Ira A. Fulton Schools of Engineering at the Arizona State University.

Conflict of interest

The authors declare that there is no conflict of interest in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hyunglae Lee.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trevino, J., Lee, H. Sex Differences in 2-DOF Human Ankle Stiffness in Relaxed and Contracted Muscles. Ann Biomed Eng 46, 2048–2056 (2018). https://doi.org/10.1007/s10439-018-2092-9

Download citation

Keywords

  • Human ankle
  • Ankle stiffness
  • Ankle injury
  • Gender difference
  • Sex difference