Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the western world. In the last three decades, fluid dynamics investigations have been an important component in the study of the cardiovascular system and CVD. A large proportion of studies have been restricted to computational fluid dynamic (CFD) modeling of blood flow. However, with the development of flow measurement techniques such as particle image velocimetry (PIV), and recent advances in additive manufacturing, experimental investigation of such flow systems has become of interest to validate CFD studies, testing vascular implants and using the data for therapeutic procedures. This article reviews the technical aspects of in-vitro arterial flow measurement with the focus on PIV. CAD modeling of geometries and rapid prototyping of molds has been reviewed. Different processes of casting rigid and compliant models for experimental analysis have been reviewed and the accuracy of construction of each method has been compared. A review of refractive index matching and blood mimicking flow circuits is also provided. Methodologies and results of the most influential experimental studies are compared to elucidate the benefits, accuracy and limitations of each method.
Similar content being viewed by others
References
Aaslid, R., T.-M. Markwalder, and H. Nornes. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 57:769–774, 1982.
Alastruey, J., K. Parker, J. Peiró, and S. Sherwin. Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Commun. Comput. Phys. 4:317–336, 2008.
Alishahi, M., M. Alishahi, and H. Emdad. Numerical simulation of blood flow in a flexible stenosed abdominal real aorta. Sci. Iran. 18:1297–1305, 2011.
Aplin, J., P. H. Geoghegan, C. J. Spence, N. Kabaliuk, and M. C. Jermy. SPIV of Natural Breathing in Neonatal Airways. Lisbon: SPIV, 2016.
Arcaute, K., and R. B. Wicker. Patient-specific compliant vessel manufacturing using dip-spin coating of rapid prototyped molds. J. Manuf. Sci. Eng. 130:051008, 2008.
Augsburger, L., M. Farhat, P. Reymond, E. Fonck, Z. Kulcsar, N. Stergiopulos, and D. A. Rüfenacht. Effect of flow diverter porosity on intraaneurysmal blood flow. Clin. Neuroradiol. 19:204–214, 2009.
Aycock, K. I., P. Hariharan, and B. A. Craven. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing. Exp. Fluids 58:154, 2017.
Bai, K., and J. Katz. On the refractive index of sodium iodide solutions for index matching in PIV. Exp. Fluids 55:1–6, 2014.
Banerjee, M. K., R. Ganguly, and A. Datta. Effect of pulsatile flow waveform and Womersley number on the flow in stenosed arterial geometry. ISRN Biomath. 2012. https://doi.org/10.5402/2012/853056.
Beulen, B., N. Bijnens, M. Rutten, P. Brands, and F. van de Vosse. Perpendicular ultrasound velocity measurement by 2D cross correlation of RF data. Part A: Validation in a straight tube. Exp. Fluids 49:1177–1186, 2010.
Biglino, G., A. Giardini, C. Baker, R. S. Figliola, T.-Y. Hsia, A. M. Taylor, and S. Schievano. In vitro study of the Norwood palliation: a patient-specific mock circulatory system. ASAIO J. 58:25–31, 2012.
Biglino, G., P. Verschueren, R. Zegels, A. M. Taylor, and S. Schievano. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J. Cardiovasc. Magn. Reson. 15:1, 2013.
Blacher, J., G. M. London, M. E. Safar, and J.-J. Mourad. Influence of age and end-stage renal disease on the stiffness of carotid wall material in hypertension. J. Hypertens. 17:237–244, 1999.
Bolke, T., S. Seshadhri, O. Gurvit, R. Bade, B. Preim, G. Janiga, M. Skalej, S. Serowy, and G. Rose. Phantom based flow analysis by means of dynamic angiography, CFD and laser-doppler-velocimetry. In: 2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007, pp. 3440–3445.
Brookshier, K., and J. Tarbell. Evaluation of a transparent blood analog fluid: aqueous xanthan gum/glycerin. Biorheology 30:107–116, 1992.
Brott, T. G., R. W. I. Hobson, G. Howard, G. S. Roubin, W. M. Clark, W. Brooks, A. Mackey, M. D. Hill, P. P. Leimgruber, A. J. Sheffet, V. J. Howard, W. S. Moore, J. H. Voeks, L. N. Hopkins, D. E. Cutlip, D. J. Cohen, J. J. Popma, R. D. Ferguson, S. N. Cohen, J. L. Blackshear, F. L. Silver, J. P. Mohr, B. K. Lal, and J. F. Meschia. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 363:11–23, 2010.
Brunette, J., R. Mongrain, and J.-C. Tardif. A realistic coronary artery phantom for particle image velocimetry. J. Vis. 7:241–248, 2004.
Buchmann, N., C. Atkinson, M. Jeremy, and J. Soria. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp. Fluids 50:1131–1151, 2011.
Buchmann, N., and M. Jermy. Particle image velocimetry measurements of blood flow in a modeled carotid artery bifurcation. In: 16th Australasian Fluid Mechanics Conference (AFMC). School of Engineering, The University of Queensland, 2007, pp. 60–67.
Buchoux, A., P. Valluri, S. Smith, A. A. Stokes, P. R. Hoskins, and V. Sboros. Manufacturing of microcirculation phantoms using rapid prototyping technologies. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 5908–5911.
Budwig, R. Refractive index matching methods for liquid flow investigations. Exp. Fluids 17:350–355, 1994.
Büsen, M., T. A. Kaufmann, M. Neidlin, U. Steinseifer, and S. J. Sonntag. In vitro flow investigations in the aortic arch during cardiopulmonary bypass with stereo-PIV. J. Biomech. 48:2005–2011, 2015.
Campo-Deaño, L., R. P. Dullens, D. G. Aarts, F. T. Pinho, and M. S. Oliveira. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics 7:034102, 2013.
Cao, P., Y. Duhamel, G. Olympe, B. Ramond, and F. Langevin. A new production method of elastic silicone carotid phantom based on MRI acquisition using rapid prototyping technique. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 5331–5334.
Cao, P., Q. Yuan, G. Olympe, B. Ramond, and F. Langevin. Feasibility of the fabrication of the silicone carotid model by ‘multi-piece-mold-injection’ method. J. Med. Bioeng. 4:4, 2015.
Caro, C. G. The Mechanics of the Circulation. Cambridge: Cambridge University Press, 2012.
Chaniotis, A., L. Kaiktsis, D. Katritsis, E. Efstathopoulos, I. Pantos, and V. Marmarellis. Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments. Physica Med. 26:140–156, 2010.
Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37:1310–1321, 2009.
Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49:2379–2393, 2007.
Chua, C. K., and K. F. Leong. Rapid Prototyping: Principles and Applications. Singapore: World Scientific, 2003.
Clarke, L., R. Velthuizen, M. Camacho, J. Heine, M. Vaidyanathan, L. Hall, R. Thatcher, and M. Silbiger. MRI segmentation: methods and applications. Magn. Reson. Imaging 13:343–368, 1995.
Colleran, R., P. S. Douglas, M. Hadamitzky, M. Gutberlet, L. Lehmkuhl, B. Foldyna, M. Woinke, U. Hink, J. Nadjiri, A. Wilk, F. Wang, G. Pontone, M. A. Hlatky, C. Rogers, and R. A. Byrne. An FFR-CT diagnostic strategy versus usual care in patients with suspected coronary artery disease planned for invasive coronary angiography at German sites: one-year results of a subgroup analysis of the PLATFORM (Prospective Longitudinal Trial of FFR-CT: Outcome and Resource Impacts) study. Open Heart 4:e000526, 2017.
Cooper, P. R. Refractive-index measurements of liquids used in conjunction with optical fibers. Appl. Opt. 22:3070–3072, 1983.
Cotter, G., O. M. Cotter, and E. Kaluski. Hemodynamic monitoring in acute heart failure. Crit. Care Med. 36:S40–S43, 2008.
Cozzi, F., G. Felisati, and M. Quadrio. Velocity measurements in nasal cavities by means of stereoscopic PIV—preliminary tests. J. Phys. Conf. Ser. 882:12010, 2017.
Dalaq, A. S., D. W. Abueidda, and R. K. A. Al-Rub. Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements. Composites A 84:266–280, 2016.
Deplano, V., C. Guivier-Curien, and E. Bertrand. 3D analysis of vortical structures in an abdominal aortic aneurysm by stereoscopic PIV. Exp. Fluids 57:167, 2016.
Deplano, V., Y. Knapp, L. Bailly, and E. Bertrand. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling. J. Biomech. 47:1262–1269, 2014.
Deplano, V., Y. Knapp, E. Bertrand, and E. Gaillard. Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm. J. Biomech. 40:2406–2413, 2007.
Deplano, V., C. Meyer, C. Guivier-Curien, and E. Bertrand. New insights into the understanding of flow dynamics in an in vitro model for abdominal aortic aneurysms. Med. Eng. Phys. 35:800–809, 2013.
Desaive, T., B. Lambermont, N. Janssen, A. Ghuysen, P. Kolh, P. Morimont, P. C. Dauby, C. Starfinger, G. M. Shaw, and J. G. Chase. Assessment of ventricular contractility and ventricular-arterial coupling with a model-based sensor. Comput. Methods Progr. Biomed. 109:182–189, 2012.
DiCarlo, A., and T. Poepping. Investigation of flow and turbulence in carotid artery models of varying compliance using particle image velocimetry. In: World Congress on Medical Physics and Biomedical Engineering, June 7–12, 2015. Toronto, Canada: Springer, 2015, pp. 1743–1746.
Docherty, P. D., P. H. Geoghegan, L. Huetter, M. Jermy, and M. Sellier. Regressive cross-correlation of pressure signals in the region of stenosis: Insights from particle image velocimetry experimentation. Biomed. Signal Process. Control 32:143–149, 2016.
Doutel, E., J. Carneiro, M. Oliveira, J. Campos, and J. Miranda. Fabrication of 3D mili-scale channels for heamodynamic studies. J. Mech. Med. Biol. 15:1550004, 2015.
Dow Corning. Product Infromation: Sylgard 184 Silicone Elastomer, Retrieved June 2017, from http://www.dowcorning.com/applications/search/default.aspx?R=131EN, 2014.
Eastwood, J. D., M. H. Lev, T. Azhari, T.-Y. Lee, D. P. Barboriak, D. M. Delong, C. Fitzek, M. Herzau, M. Wintermark, and R. Meuli. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222(1):227–236, 2002.
Elsinga, G. E., F. Scarano, B. Wieneke, and B. W. van Oudheusden. Tomographic particle image velocimetry. Exp. Fluids 41:933–947, 2006.
Finol, E. A., and C. H. Amon. Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Eng. 123:474–484, 2001.
Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. DeMont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130:021015, 2008.
Frick, M. H., M. Syvänne, M. S. Nieminen, H. Kauma, S. Majahalme, V. Virtanen, Y. A. Kesäniemi, A. Pasternack, and M.-R. Taskinen. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Circulation 96:2137–2143, 1997.
Fromageau, J., J.-L. Gennisson, C. Schmitt, R. L. Maurice, R. Mongrain, and G. Cloutier. Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54:3, 2007.
Fu, A. Y., H.-P. Chou, C. Spence, F. H. Arnold, and S. R. Quake. An integrated microfabricated cell sorter. Anal. Chem. 74:2451–2457, 2002.
Fuard, D., T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone. Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron. Eng. 85:1289–1293, 2008.
Gaynor, A. T., N. A. Meisel, C. B. Williams, and J. K. Guest. Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J. Manuf. Sci. Eng. 136:061015, 2014.
Geoghegan, P. H., N. Buchmann, M. Jermy, D. Nobes, C. Spence, and P. D. Docherty. SPIV and image correlation measurements of surface displacement during pulsatile flow in models of compliant, healthy and stenosed arteries. In: 15th International Symposium of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010, pp. 5–8.
Geoghegan, P., N. Buchmann, J. Soria, and M. Jermy. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model. Exp. Fluids 54:1–19, 2013.
Geoghegan, P., N. Buchmann, C. Spence, S. Moore, and M. Jermy. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp. Fluids 52:1331–1347, 2012.
Geoghegan, P. H., and M. C. Jermy. Flow dynamics and wall shear stress downstream of a stenosis in a compliant blood vessel. In: 17th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, 2014.
Geoghegan, P. H., M. C. Jermy, and D. S. Nobes. A PIV comparison of the flow field and wall shear stress in rigid and compliant models of healthy carotid arteries. J. Mech. Med. Biol. 17:1750041, 2016.
Geoghegan, P. H., C. Spence, W. H. Ho, M. Jermy, P. Hunter, and J. E. Cater. Stereoscopic PIV measurement of airflow in human speech during pronunciation of fricatives. In: 16th International Symposium of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 9th–12th July, 2012.
Gharib, M., and M. Beizaie. Correlation between negative near-wall shear stress in human aorta and various stages of congestive heart failure. Ann. Biomed. Eng. 31:678–685, 2003.
Grant, I. Particle image velocimetry: a review. Proc. Inst. Mech. Eng. C 211:55–76, 1997.
Gross, B. C., J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–3253, 2014.
Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology. Philadelphia: W. B. Saunders Company, 2000.
He, C. M., and M. R. Roach. The composition and mechanical properties of abdominal aortic aneurysms. J. Vasc. Surg. 20:6–13, 1994.
Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128:844–851, 2006.
Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.
Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.
Huang, R. F., T.-F. Yang, and Y.-K. Lan. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches. Exp. Fluids 48:497–508, 2010.
Huetter, L., P. H. Geoghegan, P. D. Docherty, M. S. Lazarjan, D. Clucas, and M. Jermy. Application of a meta-analysis of aortic geometry to the generation of a compliant phantom for use in particle image velocimetry experimentation. IFAC-PapersOnLine 48:407–412, 2015.
Hütter, L., P. H. Geoghegan, P. D. Docherty, M. S. Lazarjan, D. Clucas, and M. Jermy. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation. Curr. Direct. Biomed. Eng. 2:493–497, 2016.
Ionita, C. N., Y. Hoi, H. Meng, and S. Rudin. Particle image velocimetry (PIV) evaluation of flow modification in aneurysm phantoms using asymmetric stents. In: Medical Imaging 2004. International Society for Optics and Photonics, 2004, pp. 295–306.
Ionita, C. N., M. Mokin, N. Varble, D. R. Bednarek, J. Xiang, K. V. Snyder, A. H. Siddiqui, E. I. Levy, H. Meng, and S. Rudin. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. In: SPIE Medical Imaging. International Society for Optics and Photonics, 2014, p. 90380M-90380M-90312.
Isnard, R. N., B. M. Pannier, S. Laurent, G. M. London, B. Diebold, and M. E. Safar. Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: a noninvasive study. J. Am. Coll. Cardiol. 13:399–405, 1989.
Johnston, I., D. McCluskey, C. Tan, and M. Tracey. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24:035017, 2014.
Kalpakjian, S., S. R. Schmid, and K. V. Sekar. Manufacturing Engineering and Technology. Upper Saddle River: Prentice Hall, 2014.
Kamoi, S., D. T. Squire, J. Revie, C. G. Pretty, P. D. Docherty, Y. S. Chiew, T. Desaive, G. M. Shaw, and J. G. Chase. Accuracy of stroke volume estimation via reservoir pressure concept and three element Windkessel model. In: IFAC 19th World Congress, edited by E. Boje. Cape Town, South Africa, 2014.
Kaufmann, T. A., M. Hormes, M. Laumen, D. L. Timms, T. Schmitz-Rode, A. Moritz, O. Dzemali, and U. Steinseifer. Flow distribution during cardiopulmonary bypass in dependency on the outflow cannula positioning. Artif. Organs 33:988–992, 2009.
Kaupke, C., S. Kim, and N. Vaziri. Effect of erythrocyte mass on arterial blood pressure in dialysis patients receiving maintenance erythropoietin therapy. J. Am. Soc. Nephrol. 4:1874–1878, 1994.
Kefayati, S., D. W. Holdsworth, and T. L. Poepping. Turbulence intensity measurements using particle image velocimetry in diseased carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration. J. Biomech. 47:253–263, 2014.
Kefayati, S., J. S. Milner, D. W. Holdsworth, and T. L. Poepping. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration. PLoS ONE 9:e98209, 2014.
Kefayati, S., and T. L. Poepping. 3-D flow characterization and shear stress in a stenosed carotid artery bifurcation model using stereoscopic PIV technique. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010, pp. 3386–3389.
Kefayati, S., and T. L. Poepping. Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry. Med. Eng. Phys. 35:898–909, 2013.
Khanafer, K., A. Duprey, M. Schlicht, and R. Berguer. Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications. Biomed. Microdevice 11:503–508, 2009.
Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, J. R. Lindner, M. Gharib, and D. Sahn. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94, 2010.
Kim, B. J., H. Ha, H. K. Huh, G. B. Kim, J. S. Kim, N. Kim, S.-J. Lee, D.-W. Kang, and S. U. Kwon. Post-stenotic recirculating flow may cause hemodynamic perforator infarction. J. Stroke 18:66, 2016.
Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.
Kupari, M., P. Hekali, P. Keto, V.-P. Poutanen, M. J. Tikkanen, and C. Standerstkjöld-Nordenstam. Relation of aortic stiffness to factors modifying the risk of atherosclerosis in healthy people. Arterioscler. Thromb. Vasc. Biol. 14:386–394, 1994.
Laumen, M., T. Kaufmann, D. Timms, P. Schlanstein, S. Jansen, S. Gregory, K. C. Wong, T. Schmitz-Rode, and U. Steinseifer. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Artif. Organs 34:798–806, 2010.
Lerman, A., and A. M. Zeiher. Endothelial function cardiac events. Circulation 111:363–368, 2005.
Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44:1123–1131, 2011.
Long, Q., X. Xu, K. Ramnarine, and P. Hoskins. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34:1229–1242, 2001.
MacSweeney, S., G. Young, R. Greenhalgh, and J. Powell. Mechanical properties of the aneurysmal aorta. Br. J. Surg. 79:1281–1284, 1992.
Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.
Mann, H. J., and P. E. J. Nolan. Update on the management of cardiogenic shock. Curr. Opin. Crit. Care 12:431–436, 2006.
Mann, D., and J. Tarbell. Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheology 27:711–733, 1989.
Marik, P. E., R. Cavallazzi, T. Vasu, and A. Hirani. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit. Care Med. 37:2642–2647, 2009.
Marik, P., X. Monnet, and J.-L. Teboul. Hemodynamic parameters to guide fluid therapy. Ann. Intens. Care 1:1–9, 2011.
Mayer, G. A. Blood viscosity in healthy subjects and patients with coronary heart disease. Can. Med. Assoc. J. 91:951, 1964.
McDonald, D. A. Blood Flow in Arteries. London, England: Plurabelle Books Ltd., 1974.
McDonald, J. C., and G. M. Whitesides. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:491–499, 2002.
Meyer, C. A., E. Bertrand, O. Boiron, and V. Deplano. Stereoscopically observed deformations of a compliant abdominal aortic aneurysm model. J. Biomech. Eng. 133:111004, 2011.
Millon, L., H. Mohammadi, and W. Wan. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J. Biomed. Mater. Res. B 79:305–311, 2006.
Minakawa, M., I. Fukuda, T. Igarashi, K. Fukui, H. Yanaoka, and T. Inamura. Hydrodynamics of aortic cannulae during extracorporeal circulation in a mock aortic arch aneurysm model. Artif. Organs 34:105–112, 2010.
Minakawa, M., I. Fukuda, T. Inamura, H. Yanaoka, K. Fukui, K. Daitoku, Y. Suzuki, and H. Hashimoto. Hydrodynamic evaluation of axillary artery perfusion for normal and diseased aorta. Gen. Thorac. Cardiovasc. Surg. 56:215–221, 2008.
Minakawa, M., I. Fukuda, J. Yamazaki, K. Fukui, H. Yanaoka, and T. Inamura. Effect of cannula shape on aortic wall and flow turbulence: hydrodynamic study during extracorporeal circulation in mock thoracic aorta. Artif. Organs 31:880–886, 2007.
Moxham, I. Understanding arterial pressure waveforms. South. Afr. J. Anaesth. Analg. 9:40–42, 2003.
Munro, B., S. Becker, M. F. Uth, N. Preußer, and H. Herwig. Fabrication and characterization of deformable porous matrices with controlled pore characteristics. Transp. Porous Media 107:79–94, 2015.
Murugesan, K., P. A. Anandapandian, S. K. Sharma, and M. V. Kumar. Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques. J. Indian Prosthodont. Soc. 12:16–20, 2012.
Najjari, M. R., J. A. Hinke, K. V. Bulusu, and M. W. Plesniak. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp. Fluids 57:1–6, 2016.
Nemati, M., G. Loozen, N. Van der Wekken, G. Van de Belt, H. Urbach, N. Bhattacharya, and S. Kenjeres. Application of full field optical studies for pulsatile flow in a carotid artery phantom. Biomed. Opt. Express 6:4037–4050, 2015.
Nguyen, K. T., C. D. Clark, T. J. Chancellor, and D. V. Papavassiliou. Carotid geometry effects on blood flow and on risk for vascular disease. J. Biomech. 41:11–19, 2008.
Nichols, W., and M. O’Rourke. McDonald’s Blood Flow in Arteries (4th ed.). London: Edward Arnold, 1998.
Novakova-Marcincinova, L., J. Novak-Marcincin, J. Barna, and J. Torok. Special materials used in FDM rapid prototyping technology application. In: 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES). IEEE, 2012, pp. 73–76.
Oates, C. Towards an ideal blood analogue for Doppler ultrasound phantoms. Phys. Med. Biol. 36:1433, 1991.
Ozolanta, I., G. Tetere, B. Purinya, and V. Kasyanov. Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex. Med. Eng. Phys. 20:523–533, 1998.
Parker, K., J. Alastruey, and G.-B. Stan. Arterial reservoir-excess pressure and ventricular work. Med. Biol. Eng. Comput. 50:419–424, 2012.
Patel, D. J., D. L. Fry, and J. S. Janicki. The elastic symmetry of arterial segments in dogs. Circ. Res. 24:1–8, 1969.
Paul, M. C., M. M. Molla, and G. Roditi. Large-Eddy simulation of pulsatile blood flow. Med. Eng. Phys. 31:153–159, 2009.
Pazos, V., R. Mongrain, and J. Tardif. Deformable mock stenotic artery with a lipid pool. J. Biomech. Eng. 132:034501, 2010.
Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.
Pielhop, K., M. Klaas, and W. Schröder. Analysis of the unsteady flow in an elastic stenotic vessel. Eur. J. Mech. B 35:102–110, 2012.
Pironet, A., P. C. Dauby, J. G. Chase, P. D. Docherty, J. Revie, and T. Desaive. Structural identifiability of a cardiovascular system model. Med. Eng. Phys. 38:433–441, 2016.
Pironet, A., P. D. Docherty, P. C. Dauby, J. G. Chase, and T. Desaive. Practical identifiability analysis of a minimal cardiovascular system model. Comput. Methods Progr. Biomed. 2017. https://doi.org/10.1029/2000WR900350.
Poelma, C. Ultrasound imaging velocimetry: a review. Exp. Fluids 58:3, 2017.
Poelma, C., J. Mari, N. Foin, M.-X. Tang, R. Krams, C. Caro, P. Weinberg, and J. Westerweel. 3D flow reconstruction using ultrasound PIV. Exp. Fluids 50:777–785, 2011.
Poelma, C., R. Van der Mijle, J. Mari, M.-X. Tang, P. Weinberg, and J. Westerweel. Ultrasound imaging velocimetry: Toward reliable wall shear stress measurements. Eur. J. Mech. B 35:70–75, 2012.
Poepping, T. L., R. N. Rankin, and D. W. Holdsworth. Flow patterns in carotid bifurcation models using pulsed doppler ultrasound: effect of concentric vs. eccentric stenosis on turbulence and recirculation. Ultrasound Med. Biol. 36:1125–1134, 2010.
Poeze, M., B. C. Solberg, J. W. M. Greve, and G. Ramsay. Monitoring global volume-related hemodynamic or regional variables after initial resuscitation: what is a better predictor of outcome in critically ill septic patients? Crit. Care Med. 33:2494–2500, 2005.
Polaschegg, H. D. Red blood cell damage from extracorporeal circulation in hemodialysis. In: Seminars in Dialysis. Wiley Online Library, 2009, pp. 524–531.
Prasad, A. K. Stereoscopic particle image velocimetry. Exp. Fluids 29:103–116, 2000.
Qian, M., L. Niu, K. K. L. Wong, D. Abbott, Q. Zhou, and H. Zheng. Pulsatile flow characterization in a vessel phantom with elastic wall using ultrasonic particle image velocimetry technique: the impact of vessel stiffness on flow dynamics. IEEE Trans. Biomed. Eng. 61:2444–2450, 2014.
Raffel M., C. E. Willert, S. T. Wereley and J. Kompenhans. Physical and technical background. In: Particle Image Velocimetry. Springer, 2007, pp. 15–77.
Raghavan, M., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24:573–582, 1996.
Raschi, M., F. Mut, G. Byrne, C. M. Putman, S. Tateshima, F. Viñuela, T. Tanoue, K. Tanishita, and J. R. Cebral. CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm. Int. J. Numer. Methods Biomed. Eng. 28:214–228, 2012.
Razavi, A., E. Shirani, and M. R. Sadeghi. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44:2021–2030, 2011.
Rengier, F., A. Mehndiratta, H. von Tengg-Kobligk, C. M. Zechmann, R. Unterhinninghofen, H.-U. Kauczor, and F. L. Giesel. 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assisted Radiol. Surg. 5:335–341, 2010.
Rhee, K., M. H. Han, and S. H. Cha. Changes of flow characteristics by stenting in aneurysm models: influence of aneurysm geometry and stent porosity. Ann. Biomed. Eng. 30:894–904, 2002.
Rhodorsil®. Bluestar Silicones: RTV-3040 Specification. New York: Rhodorsil, 2007.
Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.
Roloff C., P. Berg, T. Redel, G. Janiga and D. Thévenin. Tomographic particle image velocimetry for the validation of hemodynamic simulations in an intracranial aneurysm. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp. 1340–1343.
Rosenson, R., A. McCormick, and E. Uretz. Distribution of blood viscosity values and biochemical correlates in healthy adults. Clin. Chem. 42:1189–1195, 1996.
Roszelle, B. N., L. F. Gonzalez, M. H. Babiker, J. Ryan, F. C. Albuquerque, and D. H. Frakes. Flow diverter effect on cerebral aneurysm hemodynamics: an in vitro comparison of telescoping stents and the Pipeline. Neuroradiology 55:751–758, 2013.
Salmi, M., K.-S. Paloheimo, J. Tuomi, J. Wolff, and A. Mäkitie. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. Cranio-Maxillofac. Surg. 41:603–609, 2013.
Sandrin, L., S. Manneville, and M. Fink. Ultrafast two-dimensional ultrasonic speckle velocimetry: a tool in flow imaging. Appl. Phys. Lett. 78:1155–1157, 2001.
Schneider, F., J. Draheim, R. Kamberger, and U. Wallrabe. Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens. Actuators A 151:95–99, 2009.
Schneider, F., T. Fellner, J. Wilde, and U. Wallrabe. Mechanical properties of silicones for MEMS. J. Micromech. Microeng. 18:065008, 2008.
Sherman, J., H. Rangwala, C. Ionita, A. Dohatcu, J. Lee, D. Bednarek, K. Hoffmann, and S. Rudin. Investigation of new flow modifying endovascular image-guided interventional (EIGI) techniques in patient-specific aneurysm phantoms (PSAPs) using optical imaging. In: Medical Imaging. International Society for Optics and Photonics, 2008, p. 69181V-69181V-69111.
Shipkowitz, T., V. Rodgers, L. J. Frazin, and K. Chandran. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches. J. Biomech. 33:717–728, 2000.
Singh, R. Process capability study of polyjet printing for plastic components. J. Mech. Sci. Technol. 25:1011–1015, 2011.
Smith, R. F., B. K. Rutt, and D. W. Holdsworth. Anthropomorphic carotid bifurcation phantom for MRI applications. J. Magn. Reson. Imaging 10:533–544, 1999.
Sollier, E., C. Murray, P. Maoddi, and D. Di Carlo. Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11:3752–3765, 2011.
Song, M. S., H. Y. Choi, J. H. Seong, and E. S. Kim. Matching-index-of-refraction of transparent 3D printing models for flow visualization. Nucl. Eng. Des. 284:185–191, 2015.
Sousa, P., F. Pinho, M. Oliveira, and M. Alves. Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5:014108, 2011.
Spence, C., N. Buchmann, and M. Jermy. Unsteady flow in the nasal cavity with high flow therapy measured by stereoscopic PIV. Exp. Fluids 52:569–579, 2012.
Spence, C. J. T., N. A. Buchmann, M. C. Jermy, and S. M. Moore. Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy. Exp. Fluids 50:1005–1017, 2011.
Stalder, A., M. Russe, A. Frydrychowicz, J. Bock, J. Hennig, and M. Markl. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 60:1218–1231, 2008.
Stamatopoulos, C., D. Mathioulakis, Y. Papaharilaou, and A. Katsamouris. Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model. Exp. Fluids 50:1695–1709, 2011.
Stoner, L., and M. J. Sabatier. Use of ultrasound for non-invasive assessment of flow-mediated dilation. J. Atheroscler. Thromb. 19:407–421, 2012.
Stratasys. FDM Support Removal. Eden Prairie: Stratasys, 2008.
Suh, S.-H., H.-H. Kim, and H. M. Kwon. CFD and in vitro studies of arterial diseases. In: 8th ICCHMT, Istanbul, Turkey, 2015.
Sulaiman, A., L. Boussel, F. Taconnet, J. M. Serfaty, H. Alsaid, C. Attia, L. Huet, and P. Douek. In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur. J. Cardio-Thoracic Surg. 33:53–57, 2008.
Surry, K., H. Austin, A. Fenster, and T. Peters. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging. Phys. Med. Biol. 49:5529, 2004.
Tanné, D., E. Bertrand, L. Kadem, P. Pibarot, and R. Rieu. Assessment of left heart and pulmonary circulation flow dynamics by a new pulsed mock circulatory system. Exp. Fluids 48:837–850, 2010.
Taylor, T. W., and T. Yamaguchi. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm—steady and unsteady flow cases. J. Biomech. Eng. 116:89–97, 1994.
Thackray, S., J. Easthaugh, N. Freemantle, and J. G. Cleland. The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure—a meta-regression analysis. Eur. J. Heart Fail. 4:515–529, 2002.
Thom, T., N. Haase, W. Rosamond, V. J. Howard, J. Rumsfeld, T. Manolio, Z.-J. Zheng, K. Flegal, C. O’Donnell, and S. Kittner. Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85, 2006.
Thubrikar, J., M. Labrosse, F. Robicsek, J. Al-Soudi, and B. Fowler. Mechanical properties of abdominal aortic aneurysm wall. J. Med. Eng. Technol. 25:133–142, 2001.
Van Ooij, P., A. Guedon, C. Poelma, J. Schneiders, M. Rutten, H. Marquering, C. Majoie, E. VanBavel, and A. Nederveen. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed. 25:14–26, 2012.
Viswanath, N., C. Rodkiewicz, and S. Zajac. On the abdominal aortic aneurysms: pulsatile state considerations. Med. Eng. Phys. 19:343–351, 1997.
Waite, L., and J. M. Fine. Applied Biofluid Mechanics. New York: Mc-Graw Hill, 2007.
Walker, A. M., C. R. Johnston, and D. E. Rival. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis. Ann. Biomed. Eng. 42:97–109, 2014.
Wicker, R. B. ‘Manufacturing Complex Compliant Cardiovascular System Models for In Vitro Hemodynamic Experimentation Using CT and MRI Data and Rapid Prototyping Technologies. New York: American Society of Mechanical Engineers, 2013.
Withey, D., and Z. Koles. A review of medical image segmentation: methods and available software. Int. J. Bioelectromagn. 10:125–148, 2008.
Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553, 1955.
Wong, K. V., and A. Hernandez. A review of additive manufacturing. ISRN Mech. Eng. 2012:208760, 2012.
World Health Organization (WHO). Cardiovascular Diseases (CVDs): Fact Sheet No. 317. Geneva: World Health Organization, 2012.
Xiong, J., S. M. Wang, W. Zhou, and J. G. Wu. Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta. J. Vasc. Surg. 48:189–195, 2008.
Yagi, T., A. Sato, M. Shinke, S. Takahashi, Y. Tobe, H. Takao, Y. Murayama, and M. Umezu. Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: transition from a laminar regime. J. R. Soc. Interface 10:20121031, 2013.
Yip, R., R. Mongrain, A. Ranga, J. Brunette, and R. Cartier. Development of anatomically correct mock-ups of the aorta for PIV investigations. In: Proceedings of the Canadian Engineering Education Association, 2011.
Yousif, M. Y., D. W. Holdsworth, and T. L. Poepping. A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp. Fluids 50:769–774, 2011.
Yu, S., and J. Zhao. A steady flow analysis on the stented and non-stented sidewall aneurysm models. Med. Eng. Phys. 21:133–141, 1999.
Zamir, M. The Physics of Pulsatile Flow. Berlin: Springer, 2000.
Zarins, C. K., D. P. Giddens, B. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.
Zeumer, H., H.-J. Freitag, F. Zanella, A. Thie, and C. Arning. Local intra-arterial fibrinolytic therapy in patients with stroke: urokinase versus recombinant tissue plasminogen activator (r-TPA). Neuroradiology 35:159–162, 1993.
Zhu, G., Q. Yuan, and Z. Chen. Experimental investigation of blood flow in the vertebral artery bifurcation. In: 6th World Congress of Biomechanics (WCB 2010), August 1–6, 2010. Singapore: Springer, pp. 1346–1349, 2010.
Acknowledgments
Funding was provided by University of Canterbury Doctoral scholarship programme.
Conflict of interest
The authors declare that they have no conflict of interest with respect to the work presented. SGY was supported during this research by the University of Canterbury Doctoral Scholarship scheme.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Merryn Tawhai oversaw the review of this article.
Rights and permissions
About this article
Cite this article
Yazdi, S.G., Geoghegan, P.H., Docherty, P.D. et al. A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques. Ann Biomed Eng 46, 1697–1721 (2018). https://doi.org/10.1007/s10439-018-2085-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-018-2085-8