A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques


Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the western world. In the last three decades, fluid dynamics investigations have been an important component in the study of the cardiovascular system and CVD. A large proportion of studies have been restricted to computational fluid dynamic (CFD) modeling of blood flow. However, with the development of flow measurement techniques such as particle image velocimetry (PIV), and recent advances in additive manufacturing, experimental investigation of such flow systems has become of interest to validate CFD studies, testing vascular implants and using the data for therapeutic procedures. This article reviews the technical aspects of in-vitro arterial flow measurement with the focus on PIV. CAD modeling of geometries and rapid prototyping of molds has been reviewed. Different processes of casting rigid and compliant models for experimental analysis have been reviewed and the accuracy of construction of each method has been compared. A review of refractive index matching and blood mimicking flow circuits is also provided. Methodologies and results of the most influential experimental studies are compared to elucidate the benefits, accuracy and limitations of each method.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. 1.

    Aaslid, R., T.-M. Markwalder, and H. Nornes. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 57:769–774, 1982.

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Alastruey, J., K. Parker, J. Peiró, and S. Sherwin. Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Commun. Comput. Phys. 4:317–336, 2008.

    Google Scholar 

  3. 3.

    Alishahi, M., M. Alishahi, and H. Emdad. Numerical simulation of blood flow in a flexible stenosed abdominal real aorta. Sci. Iran. 18:1297–1305, 2011.

    Article  Google Scholar 

  4. 4.

    Aplin, J., P. H. Geoghegan, C. J. Spence, N. Kabaliuk, and M. C. Jermy. SPIV of Natural Breathing in Neonatal Airways. Lisbon: SPIV, 2016.

    Google Scholar 

  5. 5.

    Arcaute, K., and R. B. Wicker. Patient-specific compliant vessel manufacturing using dip-spin coating of rapid prototyped molds. J. Manuf. Sci. Eng. 130:051008, 2008.

    Article  Google Scholar 

  6. 6.

    Augsburger, L., M. Farhat, P. Reymond, E. Fonck, Z. Kulcsar, N. Stergiopulos, and D. A. Rüfenacht. Effect of flow diverter porosity on intraaneurysmal blood flow. Clin. Neuroradiol. 19:204–214, 2009.

    Article  Google Scholar 

  7. 7.

    Aycock, K. I., P. Hariharan, and B. A. Craven. Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing. Exp. Fluids 58:154, 2017.

    Article  CAS  Google Scholar 

  8. 8.

    Bai, K., and J. Katz. On the refractive index of sodium iodide solutions for index matching in PIV. Exp. Fluids 55:1–6, 2014.

    Article  CAS  Google Scholar 

  9. 9.

    Banerjee, M. K., R. Ganguly, and A. Datta. Effect of pulsatile flow waveform and Womersley number on the flow in stenosed arterial geometry. ISRN Biomath. 2012. https://doi.org/10.5402/2012/853056.

    Article  Google Scholar 

  10. 10.

    Beulen, B., N. Bijnens, M. Rutten, P. Brands, and F. van de Vosse. Perpendicular ultrasound velocity measurement by 2D cross correlation of RF data. Part A: Validation in a straight tube. Exp. Fluids 49:1177–1186, 2010.

    Article  CAS  Google Scholar 

  11. 11.

    Biglino, G., A. Giardini, C. Baker, R. S. Figliola, T.-Y. Hsia, A. M. Taylor, and S. Schievano. In vitro study of the Norwood palliation: a patient-specific mock circulatory system. ASAIO J. 58:25–31, 2012.

    Article  PubMed  Google Scholar 

  12. 12.

    Biglino, G., P. Verschueren, R. Zegels, A. M. Taylor, and S. Schievano. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing. J. Cardiovasc. Magn. Reson. 15:1, 2013.

    Article  Google Scholar 

  13. 13.

    Blacher, J., G. M. London, M. E. Safar, and J.-J. Mourad. Influence of age and end-stage renal disease on the stiffness of carotid wall material in hypertension. J. Hypertens. 17:237–244, 1999.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Bolke, T., S. Seshadhri, O. Gurvit, R. Bade, B. Preim, G. Janiga, M. Skalej, S. Serowy, and G. Rose. Phantom based flow analysis by means of dynamic angiography, CFD and laser-doppler-velocimetry. In: 2007 IEEE Nuclear Science Symposium Conference Record. IEEE, 2007, pp. 3440–3445.

  15. 15.

    Brookshier, K., and J. Tarbell. Evaluation of a transparent blood analog fluid: aqueous xanthan gum/glycerin. Biorheology 30:107–116, 1992.

    Article  Google Scholar 

  16. 16.

    Brott, T. G., R. W. I. Hobson, G. Howard, G. S. Roubin, W. M. Clark, W. Brooks, A. Mackey, M. D. Hill, P. P. Leimgruber, A. J. Sheffet, V. J. Howard, W. S. Moore, J. H. Voeks, L. N. Hopkins, D. E. Cutlip, D. J. Cohen, J. J. Popma, R. D. Ferguson, S. N. Cohen, J. L. Blackshear, F. L. Silver, J. P. Mohr, B. K. Lal, and J. F. Meschia. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 363:11–23, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Brunette, J., R. Mongrain, and J.-C. Tardif. A realistic coronary artery phantom for particle image velocimetry. J. Vis. 7:241–248, 2004.

    Article  Google Scholar 

  18. 18.

    Buchmann, N., C. Atkinson, M. Jeremy, and J. Soria. Tomographic particle image velocimetry investigation of the flow in a modeled human carotid artery bifurcation. Exp. Fluids 50:1131–1151, 2011.

    Article  CAS  Google Scholar 

  19. 19.

    Buchmann, N., and M. Jermy. Particle image velocimetry measurements of blood flow in a modeled carotid artery bifurcation. In: 16th Australasian Fluid Mechanics Conference (AFMC). School of Engineering, The University of Queensland, 2007, pp. 60–67.

  20. 20.

    Buchoux, A., P. Valluri, S. Smith, A. A. Stokes, P. R. Hoskins, and V. Sboros. Manufacturing of microcirculation phantoms using rapid prototyping technologies. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 5908–5911.

  21. 21.

    Budwig, R. Refractive index matching methods for liquid flow investigations. Exp. Fluids 17:350–355, 1994.

    Article  CAS  Google Scholar 

  22. 22.

    Büsen, M., T. A. Kaufmann, M. Neidlin, U. Steinseifer, and S. J. Sonntag. In vitro flow investigations in the aortic arch during cardiopulmonary bypass with stereo-PIV. J. Biomech. 48:2005–2011, 2015.

    Article  PubMed  Google Scholar 

  23. 23.

    Campo-Deaño, L., R. P. Dullens, D. G. Aarts, F. T. Pinho, and M. S. Oliveira. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics 7:034102, 2013.

    Article  CAS  PubMed Central  Google Scholar 

  24. 24.

    Cao, P., Y. Duhamel, G. Olympe, B. Ramond, and F. Langevin. A new production method of elastic silicone carotid phantom based on MRI acquisition using rapid prototyping technique. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2013, pp. 5331–5334.

  25. 25.

    Cao, P., Q. Yuan, G. Olympe, B. Ramond, and F. Langevin. Feasibility of the fabrication of the silicone carotid model by ‘multi-piece-mold-injection’ method. J. Med. Bioeng. 4:4, 2015.

    Google Scholar 

  26. 26.

    Caro, C. G. The Mechanics of the Circulation. Cambridge: Cambridge University Press, 2012.

    Google Scholar 

  27. 27.

    Chaniotis, A., L. Kaiktsis, D. Katritsis, E. Efstathopoulos, I. Pantos, and V. Marmarellis. Computational study of pulsatile blood flow in prototype vessel geometries of coronary segments. Physica Med. 26:140–156, 2010.

    Article  CAS  Google Scholar 

  28. 28.

    Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37:1310–1321, 2009.

    Article  PubMed  Google Scholar 

  29. 29.

    Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49:2379–2393, 2007.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Chua, C. K., and K. F. Leong. Rapid Prototyping: Principles and Applications. Singapore: World Scientific, 2003.

    Book  Google Scholar 

  31. 31.

    Clarke, L., R. Velthuizen, M. Camacho, J. Heine, M. Vaidyanathan, L. Hall, R. Thatcher, and M. Silbiger. MRI segmentation: methods and applications. Magn. Reson. Imaging 13:343–368, 1995.

    Article  CAS  PubMed  Google Scholar 

  32. 32.

    Colleran, R., P. S. Douglas, M. Hadamitzky, M. Gutberlet, L. Lehmkuhl, B. Foldyna, M. Woinke, U. Hink, J. Nadjiri, A. Wilk, F. Wang, G. Pontone, M. A. Hlatky, C. Rogers, and R. A. Byrne. An FFR-CT diagnostic strategy versus usual care in patients with suspected coronary artery disease planned for invasive coronary angiography at German sites: one-year results of a subgroup analysis of the PLATFORM (Prospective Longitudinal Trial of FFR-CT: Outcome and Resource Impacts) study. Open Heart 4:e000526, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Cooper, P. R. Refractive-index measurements of liquids used in conjunction with optical fibers. Appl. Opt. 22:3070–3072, 1983.

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Cotter, G., O. M. Cotter, and E. Kaluski. Hemodynamic monitoring in acute heart failure. Crit. Care Med. 36:S40–S43, 2008.

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Cozzi, F., G. Felisati, and M. Quadrio. Velocity measurements in nasal cavities by means of stereoscopic PIV—preliminary tests. J. Phys. Conf. Ser. 882:12010, 2017.

    Article  CAS  Google Scholar 

  36. 36.

    Dalaq, A. S., D. W. Abueidda, and R. K. A. Al-Rub. Mechanical properties of 3D printed interpenetrating phase composites with novel architectured 3D solid-sheet reinforcements. Composites A 84:266–280, 2016.

    Article  CAS  Google Scholar 

  37. 37.

    Deplano, V., C. Guivier-Curien, and E. Bertrand. 3D analysis of vortical structures in an abdominal aortic aneurysm by stereoscopic PIV. Exp. Fluids 57:167, 2016.

    Article  Google Scholar 

  38. 38.

    Deplano, V., Y. Knapp, L. Bailly, and E. Bertrand. Flow of a blood analogue fluid in a compliant abdominal aortic aneurysm model: experimental modelling. J. Biomech. 47:1262–1269, 2014.

    Article  PubMed  Google Scholar 

  39. 39.

    Deplano, V., Y. Knapp, E. Bertrand, and E. Gaillard. Flow behaviour in an asymmetric compliant experimental model for abdominal aortic aneurysm. J. Biomech. 40:2406–2413, 2007.

    Article  PubMed  Google Scholar 

  40. 40.

    Deplano, V., C. Meyer, C. Guivier-Curien, and E. Bertrand. New insights into the understanding of flow dynamics in an in vitro model for abdominal aortic aneurysms. Med. Eng. Phys. 35:800–809, 2013.

    Article  PubMed  Google Scholar 

  41. 41.

    Desaive, T., B. Lambermont, N. Janssen, A. Ghuysen, P. Kolh, P. Morimont, P. C. Dauby, C. Starfinger, G. M. Shaw, and J. G. Chase. Assessment of ventricular contractility and ventricular-arterial coupling with a model-based sensor. Comput. Methods Progr. Biomed. 109:182–189, 2012.

    Article  Google Scholar 

  42. 42.

    DiCarlo, A., and T. Poepping. Investigation of flow and turbulence in carotid artery models of varying compliance using particle image velocimetry. In: World Congress on Medical Physics and Biomedical Engineering, June 7–12, 2015. Toronto, Canada: Springer, 2015, pp. 1743–1746.

  43. 43.

    Docherty, P. D., P. H. Geoghegan, L. Huetter, M. Jermy, and M. Sellier. Regressive cross-correlation of pressure signals in the region of stenosis: Insights from particle image velocimetry experimentation. Biomed. Signal Process. Control 32:143–149, 2016.

    Article  Google Scholar 

  44. 44.

    Doutel, E., J. Carneiro, M. Oliveira, J. Campos, and J. Miranda. Fabrication of 3D mili-scale channels for heamodynamic studies. J. Mech. Med. Biol. 15:1550004, 2015.

    Article  Google Scholar 

  45. 45.

    Dow Corning. Product Infromation: Sylgard 184 Silicone Elastomer, Retrieved June 2017, from http://www.dowcorning.com/applications/search/default.aspx?R=131EN, 2014.

  46. 46.

    Eastwood, J. D., M. H. Lev, T. Azhari, T.-Y. Lee, D. P. Barboriak, D. M. Delong, C. Fitzek, M. Herzau, M. Wintermark, and R. Meuli. CT perfusion scanning with deconvolution analysis: pilot study in patients with acute middle cerebral artery stroke. Radiology 222(1):227–236, 2002.

    Article  PubMed  Google Scholar 

  47. 47.

    Elsinga, G. E., F. Scarano, B. Wieneke, and B. W. van Oudheusden. Tomographic particle image velocimetry. Exp. Fluids 41:933–947, 2006.

    Article  Google Scholar 

  48. 48.

    Finol, E. A., and C. H. Amon. Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Eng. 123:474–484, 2001.

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. DeMont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130:021015, 2008.

    Article  PubMed  Google Scholar 

  50. 50.

    Frick, M. H., M. Syvänne, M. S. Nieminen, H. Kauma, S. Majahalme, V. Virtanen, Y. A. Kesäniemi, A. Pasternack, and M.-R. Taskinen. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol. Circulation 96:2137–2143, 1997.

    Article  CAS  PubMed  Google Scholar 

  51. 51.

    Fromageau, J., J.-L. Gennisson, C. Schmitt, R. L. Maurice, R. Mongrain, and G. Cloutier. Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54:3, 2007.

    Article  Google Scholar 

  52. 52.

    Fu, A. Y., H.-P. Chou, C. Spence, F. H. Arnold, and S. R. Quake. An integrated microfabricated cell sorter. Anal. Chem. 74:2451–2457, 2002.

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Fuard, D., T. Tzvetkova-Chevolleau, S. Decossas, P. Tracqui, and P. Schiavone. Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectron. Eng. 85:1289–1293, 2008.

    Article  CAS  Google Scholar 

  54. 54.

    Gaynor, A. T., N. A. Meisel, C. B. Williams, and J. K. Guest. Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing. J. Manuf. Sci. Eng. 136:061015, 2014.

    Article  Google Scholar 

  55. 55.

    Geoghegan, P. H., N. Buchmann, M. Jermy, D. Nobes, C. Spence, and P. D. Docherty. SPIV and image correlation measurements of surface displacement during pulsatile flow in models of compliant, healthy and stenosed arteries. In: 15th International Symposium of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 2010, pp. 5–8.

  56. 56.

    Geoghegan, P., N. Buchmann, J. Soria, and M. Jermy. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model. Exp. Fluids 54:1–19, 2013.

    Article  Google Scholar 

  57. 57.

    Geoghegan, P., N. Buchmann, C. Spence, S. Moore, and M. Jermy. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp. Fluids 52:1331–1347, 2012.

    Article  CAS  Google Scholar 

  58. 58.

    Geoghegan, P. H., and M. C. Jermy. Flow dynamics and wall shear stress downstream of a stenosis in a compliant blood vessel. In: 17th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, 2014.

  59. 59.

    Geoghegan, P. H., M. C. Jermy, and D. S. Nobes. A PIV comparison of the flow field and wall shear stress in rigid and compliant models of healthy carotid arteries. J. Mech. Med. Biol. 17:1750041, 2016.

    Article  Google Scholar 

  60. 60.

    Geoghegan, P. H., C. Spence, W. H. Ho, M. Jermy, P. Hunter, and J. E. Cater. Stereoscopic PIV measurement of airflow in human speech during pronunciation of fricatives. In: 16th International Symposium of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 9th–12th July, 2012.

  61. 61.

    Gharib, M., and M. Beizaie. Correlation between negative near-wall shear stress in human aorta and various stages of congestive heart failure. Ann. Biomed. Eng. 31:678–685, 2003.

    Article  PubMed  Google Scholar 

  62. 62.

    Grant, I. Particle image velocimetry: a review. Proc. Inst. Mech. Eng. C 211:55–76, 1997.

    Article  Google Scholar 

  63. 63.

    Gross, B. C., J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–3253, 2014.

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Guyton, A. C., and J. E. Hall. Textbook of Medical Physiology. Philadelphia: W. B. Saunders Company, 2000.

    Google Scholar 

  65. 65.

    He, C. M., and M. R. Roach. The composition and mechanical properties of abdominal aortic aneurysms. J. Vasc. Surg. 20:6–13, 1994.

    Article  CAS  PubMed  Google Scholar 

  66. 66.

    Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128:844–851, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.

    Article  CAS  PubMed  Google Scholar 

  68. 68.

    Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.

    Article  PubMed  Google Scholar 

  69. 69.

    Huang, R. F., T.-F. Yang, and Y.-K. Lan. Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches. Exp. Fluids 48:497–508, 2010.

    Article  CAS  Google Scholar 

  70. 70.

    Huetter, L., P. H. Geoghegan, P. D. Docherty, M. S. Lazarjan, D. Clucas, and M. Jermy. Application of a meta-analysis of aortic geometry to the generation of a compliant phantom for use in particle image velocimetry experimentation. IFAC-PapersOnLine 48:407–412, 2015.

    Article  Google Scholar 

  71. 71.

    Hütter, L., P. H. Geoghegan, P. D. Docherty, M. S. Lazarjan, D. Clucas, and M. Jermy. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation. Curr. Direct. Biomed. Eng. 2:493–497, 2016.

    Article  Google Scholar 

  72. 72.

    Ionita, C. N., Y. Hoi, H. Meng, and S. Rudin. Particle image velocimetry (PIV) evaluation of flow modification in aneurysm phantoms using asymmetric stents. In: Medical Imaging 2004. International Society for Optics and Photonics, 2004, pp. 295–306.

  73. 73.

    Ionita, C. N., M. Mokin, N. Varble, D. R. Bednarek, J. Xiang, K. V. Snyder, A. H. Siddiqui, E. I. Levy, H. Meng, and S. Rudin. Challenges and limitations of patient-specific vascular phantom fabrication using 3D Polyjet printing. In: SPIE Medical Imaging. International Society for Optics and Photonics, 2014, p. 90380M-90380M-90312.

  74. 74.

    Isnard, R. N., B. M. Pannier, S. Laurent, G. M. London, B. Diebold, and M. E. Safar. Pulsatile diameter and elastic modulus of the aortic arch in essential hypertension: a noninvasive study. J. Am. Coll. Cardiol. 13:399–405, 1989.

    Article  CAS  PubMed  Google Scholar 

  75. 75.

    Johnston, I., D. McCluskey, C. Tan, and M. Tracey. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24:035017, 2014.

    Article  CAS  Google Scholar 

  76. 76.

    Kalpakjian, S., S. R. Schmid, and K. V. Sekar. Manufacturing Engineering and Technology. Upper Saddle River: Prentice Hall, 2014.

    Google Scholar 

  77. 77.

    Kamoi, S., D. T. Squire, J. Revie, C. G. Pretty, P. D. Docherty, Y. S. Chiew, T. Desaive, G. M. Shaw, and J. G. Chase. Accuracy of stroke volume estimation via reservoir pressure concept and three element Windkessel model. In: IFAC 19th World Congress, edited by E. Boje. Cape Town, South Africa, 2014.

  78. 78.

    Kaufmann, T. A., M. Hormes, M. Laumen, D. L. Timms, T. Schmitz-Rode, A. Moritz, O. Dzemali, and U. Steinseifer. Flow distribution during cardiopulmonary bypass in dependency on the outflow cannula positioning. Artif. Organs 33:988–992, 2009.

    Article  PubMed  Google Scholar 

  79. 79.

    Kaupke, C., S. Kim, and N. Vaziri. Effect of erythrocyte mass on arterial blood pressure in dialysis patients receiving maintenance erythropoietin therapy. J. Am. Soc. Nephrol. 4:1874–1878, 1994.

    CAS  PubMed  Google Scholar 

  80. 80.

    Kefayati, S., D. W. Holdsworth, and T. L. Poepping. Turbulence intensity measurements using particle image velocimetry in diseased carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration. J. Biomech. 47:253–263, 2014.

    Article  PubMed  Google Scholar 

  81. 81.

    Kefayati, S., J. S. Milner, D. W. Holdsworth, and T. L. Poepping. In vitro shear stress measurements using particle image velocimetry in a family of carotid artery models: effect of stenosis severity, plaque eccentricity, and ulceration. PLoS ONE 9:e98209, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Kefayati, S., and T. L. Poepping. 3-D flow characterization and shear stress in a stenosed carotid artery bifurcation model using stereoscopic PIV technique. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 2010, pp. 3386–3389.

  83. 83.

    Kefayati, S., and T. L. Poepping. Transitional flow analysis in the carotid artery bifurcation by proper orthogonal decomposition and particle image velocimetry. Med. Eng. Phys. 35:898–909, 2013.

    Article  PubMed  Google Scholar 

  84. 84.

    Khanafer, K., A. Duprey, M. Schlicht, and R. Berguer. Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications. Biomed. Microdevice 11:503–508, 2009.

    Article  CAS  Google Scholar 

  85. 85.

    Kheradvar, A., H. Houle, G. Pedrizzetti, G. Tonti, T. Belcik, M. Ashraf, J. R. Lindner, M. Gharib, and D. Sahn. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J. Am. Soc. Echocardiogr. 23:86–94, 2010.

    Article  PubMed  Google Scholar 

  86. 86.

    Kim, B. J., H. Ha, H. K. Huh, G. B. Kim, J. S. Kim, N. Kim, S.-J. Lee, D.-W. Kang, and S. U. Kwon. Post-stenotic recirculating flow may cause hemodynamic perforator infarction. J. Stroke 18:66, 2016.

    Article  PubMed  Google Scholar 

  87. 87.

    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  88. 88.

    Kupari, M., P. Hekali, P. Keto, V.-P. Poutanen, M. J. Tikkanen, and C. Standerstkjöld-Nordenstam. Relation of aortic stiffness to factors modifying the risk of atherosclerosis in healthy people. Arterioscler. Thromb. Vasc. Biol. 14:386–394, 1994.

    Article  CAS  Google Scholar 

  89. 89.

    Laumen, M., T. Kaufmann, D. Timms, P. Schlanstein, S. Jansen, S. Gregory, K. C. Wong, T. Schmitz-Rode, and U. Steinseifer. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Artif. Organs 34:798–806, 2010.

    Article  PubMed  Google Scholar 

  90. 90.

    Lerman, A., and A. M. Zeiher. Endothelial function cardiac events. Circulation 111:363–368, 2005.

    Article  PubMed  Google Scholar 

  91. 91.

    Liu, X., Y. Fan, X. Deng, and F. Zhan. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J. Biomech. 44:1123–1131, 2011.

    Article  PubMed  Google Scholar 

  92. 92.

    Long, Q., X. Xu, K. Ramnarine, and P. Hoskins. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34:1229–1242, 2001.

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    MacSweeney, S., G. Young, R. Greenhalgh, and J. Powell. Mechanical properties of the aneurysmal aorta. Br. J. Surg. 79:1281–1284, 1992.

    Article  CAS  PubMed  Google Scholar 

  94. 94.

    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.

    Article  CAS  Google Scholar 

  95. 95.

    Mann, H. J., and P. E. J. Nolan. Update on the management of cardiogenic shock. Curr. Opin. Crit. Care 12:431–436, 2006.

    Article  PubMed  Google Scholar 

  96. 96.

    Mann, D., and J. Tarbell. Flow of non-Newtonian blood analog fluids in rigid curved and straight artery models. Biorheology 27:711–733, 1989.

    Article  Google Scholar 

  97. 97.

    Marik, P. E., R. Cavallazzi, T. Vasu, and A. Hirani. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit. Care Med. 37:2642–2647, 2009.

    Article  PubMed  Google Scholar 

  98. 98.

    Marik, P., X. Monnet, and J.-L. Teboul. Hemodynamic parameters to guide fluid therapy. Ann. Intens. Care 1:1–9, 2011.

    Article  Google Scholar 

  99. 99.

    Mayer, G. A. Blood viscosity in healthy subjects and patients with coronary heart disease. Can. Med. Assoc. J. 91:951, 1964.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    McDonald, D. A. Blood Flow in Arteries. London, England: Plurabelle Books Ltd., 1974.

    Google Scholar 

  101. 101.

    McDonald, J. C., and G. M. Whitesides. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35:491–499, 2002.

    Article  CAS  PubMed  Google Scholar 

  102. 102.

    Meyer, C. A., E. Bertrand, O. Boiron, and V. Deplano. Stereoscopically observed deformations of a compliant abdominal aortic aneurysm model. J. Biomech. Eng. 133:111004, 2011.

    Article  PubMed  Google Scholar 

  103. 103.

    Millon, L., H. Mohammadi, and W. Wan. Anisotropic polyvinyl alcohol hydrogel for cardiovascular applications. J. Biomed. Mater. Res. B 79:305–311, 2006.

    Article  CAS  Google Scholar 

  104. 104.

    Minakawa, M., I. Fukuda, T. Igarashi, K. Fukui, H. Yanaoka, and T. Inamura. Hydrodynamics of aortic cannulae during extracorporeal circulation in a mock aortic arch aneurysm model. Artif. Organs 34:105–112, 2010.

    Article  PubMed  Google Scholar 

  105. 105.

    Minakawa, M., I. Fukuda, T. Inamura, H. Yanaoka, K. Fukui, K. Daitoku, Y. Suzuki, and H. Hashimoto. Hydrodynamic evaluation of axillary artery perfusion for normal and diseased aorta. Gen. Thorac. Cardiovasc. Surg. 56:215–221, 2008.

    Article  PubMed  Google Scholar 

  106. 106.

    Minakawa, M., I. Fukuda, J. Yamazaki, K. Fukui, H. Yanaoka, and T. Inamura. Effect of cannula shape on aortic wall and flow turbulence: hydrodynamic study during extracorporeal circulation in mock thoracic aorta. Artif. Organs 31:880–886, 2007.

    Article  PubMed  Google Scholar 

  107. 107.

    Moxham, I. Understanding arterial pressure waveforms. South. Afr. J. Anaesth. Analg. 9:40–42, 2003.

    Google Scholar 

  108. 108.

    Munro, B., S. Becker, M. F. Uth, N. Preußer, and H. Herwig. Fabrication and characterization of deformable porous matrices with controlled pore characteristics. Transp. Porous Media 107:79–94, 2015.

    Article  CAS  Google Scholar 

  109. 109.

    Murugesan, K., P. A. Anandapandian, S. K. Sharma, and M. V. Kumar. Comparative evaluation of dimension and surface detail accuracy of models produced by three different rapid prototype techniques. J. Indian Prosthodont. Soc. 12:16–20, 2012.

    Article  CAS  PubMed  Google Scholar 

  110. 110.

    Najjari, M. R., J. A. Hinke, K. V. Bulusu, and M. W. Plesniak. On the rheology of refractive-index-matched, non-Newtonian blood-analog fluids for PIV experiments. Exp. Fluids 57:1–6, 2016.

    Article  CAS  Google Scholar 

  111. 111.

    Nemati, M., G. Loozen, N. Van der Wekken, G. Van de Belt, H. Urbach, N. Bhattacharya, and S. Kenjeres. Application of full field optical studies for pulsatile flow in a carotid artery phantom. Biomed. Opt. Express 6:4037–4050, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Nguyen, K. T., C. D. Clark, T. J. Chancellor, and D. V. Papavassiliou. Carotid geometry effects on blood flow and on risk for vascular disease. J. Biomech. 41:11–19, 2008.

    Article  PubMed  Google Scholar 

  113. 113.

    Nichols, W., and M. O’Rourke. McDonald’s Blood Flow in Arteries (4th ed.). London: Edward Arnold, 1998.

    Google Scholar 

  114. 114.

    Novakova-Marcincinova, L., J. Novak-Marcincin, J. Barna, and J. Torok. Special materials used in FDM rapid prototyping technology application. In: 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES). IEEE, 2012, pp. 73–76.

  115. 115.

    Oates, C. Towards an ideal blood analogue for Doppler ultrasound phantoms. Phys. Med. Biol. 36:1433, 1991.

    Article  CAS  PubMed  Google Scholar 

  116. 116.

    Ozolanta, I., G. Tetere, B. Purinya, and V. Kasyanov. Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex. Med. Eng. Phys. 20:523–533, 1998.

    Article  CAS  PubMed  Google Scholar 

  117. 117.

    Parker, K., J. Alastruey, and G.-B. Stan. Arterial reservoir-excess pressure and ventricular work. Med. Biol. Eng. Comput. 50:419–424, 2012.

    Article  PubMed  Google Scholar 

  118. 118.

    Patel, D. J., D. L. Fry, and J. S. Janicki. The elastic symmetry of arterial segments in dogs. Circ. Res. 24:1–8, 1969.

    Article  CAS  PubMed  Google Scholar 

  119. 119.

    Paul, M. C., M. M. Molla, and G. Roditi. Large-Eddy simulation of pulsatile blood flow. Med. Eng. Phys. 31:153–159, 2009.

    Article  PubMed  Google Scholar 

  120. 120.

    Pazos, V., R. Mongrain, and J. Tardif. Deformable mock stenotic artery with a lipid pool. J. Biomech. Eng. 132:034501, 2010.

    Article  CAS  PubMed  Google Scholar 

  121. 121.

    Perktold, K., and G. Rappitsch. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28:845–856, 1995.

    Article  CAS  PubMed  Google Scholar 

  122. 122.

    Pielhop, K., M. Klaas, and W. Schröder. Analysis of the unsteady flow in an elastic stenotic vessel. Eur. J. Mech. B 35:102–110, 2012.

    Article  Google Scholar 

  123. 123.

    Pironet, A., P. C. Dauby, J. G. Chase, P. D. Docherty, J. Revie, and T. Desaive. Structural identifiability of a cardiovascular system model. Med. Eng. Phys. 38:433–441, 2016.

    Article  PubMed  Google Scholar 

  124. 124.

    Pironet, A., P. D. Docherty, P. C. Dauby, J. G. Chase, and T. Desaive. Practical identifiability analysis of a minimal cardiovascular system model. Comput. Methods Progr. Biomed. 2017. https://doi.org/10.1029/2000WR900350.

    Article  Google Scholar 

  125. 125.

    Poelma, C. Ultrasound imaging velocimetry: a review. Exp. Fluids 58:3, 2017.

    Article  Google Scholar 

  126. 126.

    Poelma, C., J. Mari, N. Foin, M.-X. Tang, R. Krams, C. Caro, P. Weinberg, and J. Westerweel. 3D flow reconstruction using ultrasound PIV. Exp. Fluids 50:777–785, 2011.

    Article  CAS  Google Scholar 

  127. 127.

    Poelma, C., R. Van der Mijle, J. Mari, M.-X. Tang, P. Weinberg, and J. Westerweel. Ultrasound imaging velocimetry: Toward reliable wall shear stress measurements. Eur. J. Mech. B 35:70–75, 2012.

    Article  Google Scholar 

  128. 128.

    Poepping, T. L., R. N. Rankin, and D. W. Holdsworth. Flow patterns in carotid bifurcation models using pulsed doppler ultrasound: effect of concentric vs. eccentric stenosis on turbulence and recirculation. Ultrasound Med. Biol. 36:1125–1134, 2010.

    Article  PubMed  Google Scholar 

  129. 129.

    Poeze, M., B. C. Solberg, J. W. M. Greve, and G. Ramsay. Monitoring global volume-related hemodynamic or regional variables after initial resuscitation: what is a better predictor of outcome in critically ill septic patients? Crit. Care Med. 33:2494–2500, 2005.

    Article  PubMed  Google Scholar 

  130. 130.

    Polaschegg, H. D. Red blood cell damage from extracorporeal circulation in hemodialysis. In: Seminars in Dialysis. Wiley Online Library, 2009, pp. 524–531.

  131. 131.

    Prasad, A. K. Stereoscopic particle image velocimetry. Exp. Fluids 29:103–116, 2000.

    Article  Google Scholar 

  132. 132.

    Qian, M., L. Niu, K. K. L. Wong, D. Abbott, Q. Zhou, and H. Zheng. Pulsatile flow characterization in a vessel phantom with elastic wall using ultrasonic particle image velocimetry technique: the impact of vessel stiffness on flow dynamics. IEEE Trans. Biomed. Eng. 61:2444–2450, 2014.

    Article  PubMed  Google Scholar 

  133. 133.

    Raffel M., C. E. Willert, S. T. Wereley and J. Kompenhans. Physical and technical background. In: Particle Image Velocimetry. Springer, 2007, pp. 15–77.

  134. 134.

    Raghavan, M., M. W. Webster, and D. A. Vorp. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann. Biomed. Eng. 24:573–582, 1996.

    Article  CAS  PubMed  Google Scholar 

  135. 135.

    Raschi, M., F. Mut, G. Byrne, C. M. Putman, S. Tateshima, F. Viñuela, T. Tanoue, K. Tanishita, and J. R. Cebral. CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm. Int. J. Numer. Methods Biomed. Eng. 28:214–228, 2012.

    Article  Google Scholar 

  136. 136.

    Razavi, A., E. Shirani, and M. R. Sadeghi. Numerical simulation of blood pulsatile flow in a stenosed carotid artery using different rheological models. J. Biomech. 44:2021–2030, 2011.

    Article  CAS  PubMed  Google Scholar 

  137. 137.

    Rengier, F., A. Mehndiratta, H. von Tengg-Kobligk, C. M. Zechmann, R. Unterhinninghofen, H.-U. Kauczor, and F. L. Giesel. 3D printing based on imaging data: review of medical applications. Int. J. Comput. Assisted Radiol. Surg. 5:335–341, 2010.

    Article  CAS  Google Scholar 

  138. 138.

    Rhee, K., M. H. Han, and S. H. Cha. Changes of flow characteristics by stenting in aneurysm models: influence of aneurysm geometry and stent porosity. Ann. Biomed. Eng. 30:894–904, 2002.

    Article  PubMed  Google Scholar 

  139. 139.

    Rhodorsil®. Bluestar Silicones: RTV-3040 Specification. New York: Rhodorsil, 2007.

    Google Scholar 

  140. 140.

    Roach, M. R., and A. C. Burton. The reason for the shape of the distensibility curves of arteries. Can. J. Biochem. Physiol. 35:681–690, 1957.

    Article  CAS  PubMed  Google Scholar 

  141. 141.

    Roloff C., P. Berg, T. Redel, G. Janiga and D. Thévenin. Tomographic particle image velocimetry for the validation of hemodynamic simulations in an intracranial aneurysm. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017, pp. 1340–1343.

  142. 142.

    Rosenson, R., A. McCormick, and E. Uretz. Distribution of blood viscosity values and biochemical correlates in healthy adults. Clin. Chem. 42:1189–1195, 1996.

    CAS  PubMed  Google Scholar 

  143. 143.

    Roszelle, B. N., L. F. Gonzalez, M. H. Babiker, J. Ryan, F. C. Albuquerque, and D. H. Frakes. Flow diverter effect on cerebral aneurysm hemodynamics: an in vitro comparison of telescoping stents and the Pipeline. Neuroradiology 55:751–758, 2013.

    Article  PubMed  Google Scholar 

  144. 144.

    Salmi, M., K.-S. Paloheimo, J. Tuomi, J. Wolff, and A. Mäkitie. Accuracy of medical models made by additive manufacturing (rapid manufacturing). J. Cranio-Maxillofac. Surg. 41:603–609, 2013.

    Article  Google Scholar 

  145. 145.

    Sandrin, L., S. Manneville, and M. Fink. Ultrafast two-dimensional ultrasonic speckle velocimetry: a tool in flow imaging. Appl. Phys. Lett. 78:1155–1157, 2001.

    Article  CAS  Google Scholar 

  146. 146.

    Schneider, F., J. Draheim, R. Kamberger, and U. Wallrabe. Process and material properties of polydimethylsiloxane (PDMS) for optical MEMS. Sens. Actuators A 151:95–99, 2009.

    Article  CAS  Google Scholar 

  147. 147.

    Schneider, F., T. Fellner, J. Wilde, and U. Wallrabe. Mechanical properties of silicones for MEMS. J. Micromech. Microeng. 18:065008, 2008.

    Article  Google Scholar 

  148. 148.

    Sherman, J., H. Rangwala, C. Ionita, A. Dohatcu, J. Lee, D. Bednarek, K. Hoffmann, and S. Rudin. Investigation of new flow modifying endovascular image-guided interventional (EIGI) techniques in patient-specific aneurysm phantoms (PSAPs) using optical imaging. In: Medical Imaging. International Society for Optics and Photonics, 2008, p. 69181V-69181V-69111.

  149. 149.

    Shipkowitz, T., V. Rodgers, L. J. Frazin, and K. Chandran. Numerical study on the effect of secondary flow in the human aorta on local shear stresses in abdominal aortic branches. J. Biomech. 33:717–728, 2000.

    Article  CAS  PubMed  Google Scholar 

  150. 150.

    Singh, R. Process capability study of polyjet printing for plastic components. J. Mech. Sci. Technol. 25:1011–1015, 2011.

    Article  Google Scholar 

  151. 151.

    Smith, R. F., B. K. Rutt, and D. W. Holdsworth. Anthropomorphic carotid bifurcation phantom for MRI applications. J. Magn. Reson. Imaging 10:533–544, 1999.

    Article  CAS  PubMed  Google Scholar 

  152. 152.

    Sollier, E., C. Murray, P. Maoddi, and D. Di Carlo. Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11:3752–3765, 2011.

    Article  CAS  PubMed  Google Scholar 

  153. 153.

    Song, M. S., H. Y. Choi, J. H. Seong, and E. S. Kim. Matching-index-of-refraction of transparent 3D printing models for flow visualization. Nucl. Eng. Des. 284:185–191, 2015.

    Article  CAS  Google Scholar 

  154. 154.

    Sousa, P., F. Pinho, M. Oliveira, and M. Alves. Extensional flow of blood analog solutions in microfluidic devices. Biomicrofluidics 5:014108, 2011.

    Article  CAS  PubMed Central  Google Scholar 

  155. 155.

    Spence, C., N. Buchmann, and M. Jermy. Unsteady flow in the nasal cavity with high flow therapy measured by stereoscopic PIV. Exp. Fluids 52:569–579, 2012.

    Article  CAS  Google Scholar 

  156. 156.

    Spence, C. J. T., N. A. Buchmann, M. C. Jermy, and S. M. Moore. Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy. Exp. Fluids 50:1005–1017, 2011.

    Article  Google Scholar 

  157. 157.

    Stalder, A., M. Russe, A. Frydrychowicz, J. Bock, J. Hennig, and M. Markl. Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn. Reson. Med. 60:1218–1231, 2008.

    Article  CAS  PubMed  Google Scholar 

  158. 158.

    Stamatopoulos, C., D. Mathioulakis, Y. Papaharilaou, and A. Katsamouris. Experimental unsteady flow study in a patient-specific abdominal aortic aneurysm model. Exp. Fluids 50:1695–1709, 2011.

    Article  CAS  Google Scholar 

  159. 159.

    Stoner, L., and M. J. Sabatier. Use of ultrasound for non-invasive assessment of flow-mediated dilation. J. Atheroscler. Thromb. 19:407–421, 2012.

    Article  PubMed  Google Scholar 

  160. 160.

    Stratasys. FDM Support Removal. Eden Prairie: Stratasys, 2008.

    Google Scholar 

  161. 161.

    Suh, S.-H., H.-H. Kim, and H. M. Kwon. CFD and in vitro studies of arterial diseases. In: 8th ICCHMT, Istanbul, Turkey, 2015.

  162. 162.

    Sulaiman, A., L. Boussel, F. Taconnet, J. M. Serfaty, H. Alsaid, C. Attia, L. Huet, and P. Douek. In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur. J. Cardio-Thoracic Surg. 33:53–57, 2008.

    Article  Google Scholar 

  163. 163.

    Surry, K., H. Austin, A. Fenster, and T. Peters. Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging. Phys. Med. Biol. 49:5529, 2004.

    Article  CAS  PubMed  Google Scholar 

  164. 164.

    Tanné, D., E. Bertrand, L. Kadem, P. Pibarot, and R. Rieu. Assessment of left heart and pulmonary circulation flow dynamics by a new pulsed mock circulatory system. Exp. Fluids 48:837–850, 2010.

    Article  Google Scholar 

  165. 165.

    Taylor, T. W., and T. Yamaguchi. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm—steady and unsteady flow cases. J. Biomech. Eng. 116:89–97, 1994.

    Article  CAS  PubMed  Google Scholar 

  166. 166.

    Thackray, S., J. Easthaugh, N. Freemantle, and J. G. Cleland. The effectiveness and relative effectiveness of intravenous inotropic drugs acting through the adrenergic pathway in patients with heart failure—a meta-regression analysis. Eur. J. Heart Fail. 4:515–529, 2002.

    Article  CAS  PubMed  Google Scholar 

  167. 167.

    Thom, T., N. Haase, W. Rosamond, V. J. Howard, J. Rumsfeld, T. Manolio, Z.-J. Zheng, K. Flegal, C. O’Donnell, and S. Kittner. Heart disease and stroke statistics–2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113:e85, 2006.

    PubMed  Google Scholar 

  168. 168.

    Thubrikar, J., M. Labrosse, F. Robicsek, J. Al-Soudi, and B. Fowler. Mechanical properties of abdominal aortic aneurysm wall. J. Med. Eng. Technol. 25:133–142, 2001.

    Article  CAS  PubMed  Google Scholar 

  169. 169.

    Van Ooij, P., A. Guedon, C. Poelma, J. Schneiders, M. Rutten, H. Marquering, C. Majoie, E. VanBavel, and A. Nederveen. Complex flow patterns in a real-size intracranial aneurysm phantom: phase contrast MRI compared with particle image velocimetry and computational fluid dynamics. NMR Biomed. 25:14–26, 2012.

    Article  PubMed  Google Scholar 

  170. 170.

    Viswanath, N., C. Rodkiewicz, and S. Zajac. On the abdominal aortic aneurysms: pulsatile state considerations. Med. Eng. Phys. 19:343–351, 1997.

    Article  CAS  PubMed  Google Scholar 

  171. 171.

    Waite, L., and J. M. Fine. Applied Biofluid Mechanics. New York: Mc-Graw Hill, 2007.

    Google Scholar 

  172. 172.

    Walker, A. M., C. R. Johnston, and D. E. Rival. On the characterization of a non-Newtonian blood analog and its response to pulsatile flow downstream of a simplified stenosis. Ann. Biomed. Eng. 42:97–109, 2014.

    Article  PubMed  Google Scholar 

  173. 173.

    Wicker, R. B. ‘Manufacturing Complex Compliant Cardiovascular System Models for In Vitro Hemodynamic Experimentation Using CT and MRI Data and Rapid Prototyping Technologies. New York: American Society of Mechanical Engineers, 2013.

    Google Scholar 

  174. 174.

    Withey, D., and Z. Koles. A review of medical image segmentation: methods and available software. Int. J. Bioelectromagn. 10:125–148, 2008.

    Google Scholar 

  175. 175.

    Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127:553, 1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. 176.

    Wong, K. V., and A. Hernandez. A review of additive manufacturing. ISRN Mech. Eng. 2012:208760, 2012.

    Article  Google Scholar 

  177. 177.

    World Health Organization (WHO). Cardiovascular Diseases (CVDs): Fact Sheet No. 317. Geneva: World Health Organization, 2012.

    Google Scholar 

  178. 178.

    Xiong, J., S. M. Wang, W. Zhou, and J. G. Wu. Measurement and analysis of ultimate mechanical properties, stress-strain curve fit, and elastic modulus formula of human abdominal aortic aneurysm and nonaneurysmal abdominal aorta. J. Vasc. Surg. 48:189–195, 2008.

    Article  PubMed  Google Scholar 

  179. 179.

    Yagi, T., A. Sato, M. Shinke, S. Takahashi, Y. Tobe, H. Takao, Y. Murayama, and M. Umezu. Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: transition from a laminar regime. J. R. Soc. Interface 10:20121031, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  180. 180.

    Yip, R., R. Mongrain, A. Ranga, J. Brunette, and R. Cartier. Development of anatomically correct mock-ups of the aorta for PIV investigations. In: Proceedings of the Canadian Engineering Education Association, 2011.

  181. 181.

    Yousif, M. Y., D. W. Holdsworth, and T. L. Poepping. A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp. Fluids 50:769–774, 2011.

    Article  CAS  Google Scholar 

  182. 182.

    Yu, S., and J. Zhao. A steady flow analysis on the stented and non-stented sidewall aneurysm models. Med. Eng. Phys. 21:133–141, 1999.

    Article  CAS  PubMed  Google Scholar 

  183. 183.

    Zamir, M. The Physics of Pulsatile Flow. Berlin: Springer, 2000.

    Book  Google Scholar 

  184. 184.

    Zarins, C. K., D. P. Giddens, B. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53:502–514, 1983.

    Article  CAS  PubMed  Google Scholar 

  185. 185.

    Zeumer, H., H.-J. Freitag, F. Zanella, A. Thie, and C. Arning. Local intra-arterial fibrinolytic therapy in patients with stroke: urokinase versus recombinant tissue plasminogen activator (r-TPA). Neuroradiology 35:159–162, 1993.

    Article  CAS  PubMed  Google Scholar 

  186. 186.

    Zhu, G., Q. Yuan, and Z. Chen. Experimental investigation of blood flow in the vertebral artery bifurcation. In: 6th World Congress of Biomechanics (WCB 2010), August 1–6, 2010. Singapore: Springer, pp. 1346–1349, 2010.

Download references


Funding was provided by University of Canterbury Doctoral scholarship programme.

Conflict of interest

The authors declare that they have no conflict of interest with respect to the work presented. SGY was supported during this research by the University of Canterbury Doctoral Scholarship scheme.

Author information



Corresponding author

Correspondence to P. D. Docherty.

Additional information

Associate Editor Merryn Tawhai oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yazdi, S.G., Geoghegan, P.H., Docherty, P.D. et al. A Review of Arterial Phantom Fabrication Methods for Flow Measurement Using PIV Techniques. Ann Biomed Eng 46, 1697–1721 (2018). https://doi.org/10.1007/s10439-018-2085-8

Download citation


  • Particle image velocimetry
  • Manufacturing
  • In vitro experimentation
  • Experimental fluid dynamics
  • Haemodynamics
  • Cardiovascular disease