In Vivo Inspection of the Olfactory Epithelium: Feasibility of Robotized Optical Biopsy

Abstract

Inspecting the olfactory cleft can be of high interest, as it is an open access to neurons, and thus an opportunity to collect in situ related data in a non-invasive way. Also, recent studies show a strong link between olfactory deficiency and neurodegenerative diseases such as Alzheimer and Parkinson diseases. However, no inspection of this area is possible today, as it is very difficult to access. Only robot-assisted interventions seem viable to provide the required dexterity. The feasibility of this approach is demonstrated in this article, which shows that the path complexity to the olfactory cleft can be managed with a concentric tube robot (CTR), a particular type of continuum robot. First, new anatomical data are elaborated, in particular for the olfactory cleft, that remains hardly characterized. 3D reconstructions are conducted on the database of 20 subjects, using CT scan images. Measurements are performed to describe the anatomy, including metrics with inter-subject variability. Then, the existence of collision-free passageways for CTR is shown using the 3D reconstructions. Among the 20 subjects, 19 can be inspected using only 3 different robot geometries. This constitutes an essential step towards a robotic device to inspect subjects for clinical purposes.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Notes

  1. 1.

    http://projects.femto-st.fr/projet-nemro/contact.

References

  1. 1.

    Aarli, J. A., T. Dua, A. Janca, and A. Muscetta. Neurological Disorders: Public Health Challenges. Geneva: World Health Organization, 2006, pp. 32.

    Google Scholar 

  2. 2.

    Amorim, P., T. Moraes, J. Silva, and H. Pedrini. InVesalius: An interactive rendering framework for health care support. In: Advances in Visual Computing, 2015, vol. 9474, pp. 45–54.

  3. 3.

    AGILTRON. Miniature oct fiber probe. http://www.agiltron.com/PDFs/Miniature

  4. 4.

    Bergeles, C., A. H. Gosline, N. V. Vasilyev, P. J. Codd, P. J. del Nido, and P. E. Dupont. Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Robot. 31(1):67–84, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Bojsen-Moller, F. and J. Fahrenkrug. Nasal swell-bodies and cyclic changes in the air passage of the rat and rabbit nose. J. Anat. 110:25, 1971.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Bruyas, A., F. Geiskopf, and P. Renaud. Toward unibody robotic structures with integrated functions using multimaterial additive manufacturing: case study of an MRI-compatible interventional device. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp.1744–1750.

  7. 7.

    Bui, N. L., S. H. Ong, and K. W. C. Foong. Automatic segmentation of the nasal cavity and paranasal sinuses from cone-beam CT images.Int. J. Comput. Assist. Radiol. Surg. 10(8):1269–1277, 2015.

    Article  PubMed  Google Scholar 

  8. 8.

    Burgner-Kahrs, J., D. C. Rucker, and H. Choset. Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6):1261–1280, 2015.

    Article  Google Scholar 

  9. 9.

    Burgner, J., P. J. Swaney, R. Lathrop, K. D. Weaver, R. J. Webster et al. Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans. Biomed. Eng. 60(9):2567–2575, 2013.

    Article  PubMed  Google Scholar 

  10. 10.

    Butler, E. J., R. Hammond-Oakley, S. Chawarski, A. H. Gosline, P. Codd, T. Anor, J. R. Madsen, P. E. Dupont, and J. Lock. Robotic neuro-endoscope with concentric tube augmentation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2012, pp.2941–2946.

  11. 11.

    Cignoni, P., M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia. MeshLab: an open-source mesh processing tool. In: Sixth Eurographics Italian Chapter Conference, 2008, pp.129–136.

  12. 12.

    Costanzo, R. M. Regeneration of olfactory receptor cells. Ciba Found. Symp. 160:233–248, 1991.

    CAS  PubMed  Google Scholar 

  13. 13.

    Doty, R. L. Olfactory dysfunction in Parkinson disease. Nat. Rev. Neurol. 8(6):329–339, 2012.

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Dryer, L. and P. Graziadei. Influence of the olfactory organ on brain development. Perspect. Dev. Neurobiol. 2(2):163–174, 1994.

    CAS  PubMed  Google Scholar 

  15. 15.

    Dupont, P. E., J. Lock, B. Itkowitz, and E. Butler. Design and control of concentric-tube robots. IEEE Trans. Robot. 26(2):209–225, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Elwany, S., A. Medanni, M. Eid, A. Aly, A. El-Daly, and S. Ammar. Radiological observations on the olfactory fossa and ethmoid roof. J. Laryngol. Otol. 124(12):1251–1256, 2010.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Escada, P. A., C. Lima, and J. M. da Silva. The human olfactory mucosa. Eur. Arch. Oto-Rhino-Laryngol. 124(12):1251–1256, 2010.

    Google Scholar 

  18. 18.

    Flood, D. G. and P. D. Coleman. Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data. Neurobiol. Aging 9:453–463, 1988.

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Gilbert, H. B., J. Neimat, and R. J. Webster. Concentric tube robots as steerable needles: achieving follow-the-leader deployment. IEEE Trans. Robot. 31(2):246–258, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Gladwin, K. and D. Choi. Olfactory ensheathing cells: part Icurrent concepts and experimental laboratory models. World Neurosurg. 83(1):114–119, 2015.

    Article  PubMed  Google Scholar 

  21. 21.

    Godoy, M. D. C. L., R. L. Voegels, F. de Rezende Pinna, R. Imamura, and J. M. Farfel. Olfaction in neurologic and neurodegenerative diseases: a literature review. Int. Arch. Otorhinolaryngol. 19(2):176–179, 2015.

    PubMed  Google Scholar 

  22. 22.

    Gopinath, B., K. J. Anstey, A. Kifley, and P. Mitchell. Olfactory impairment is associated with functional disability and reduced independence among older adults. Maturitas 72(1):50–55, 2012.

    Article  PubMed  Google Scholar 

  23. 23.

    Gosline, A. H., N. V. Vasilyev, E. J. Butler, C. Folk, A. Cohen, R. Chen, N. Lang, P. J. Del Nido, and P. E. Dupont. Percutaneous intracardiac beating-heart surgery using metal mems tissue approximation tools. Int. J. Robot. Res. 31(9):1081–1093, 2012.

    Article  Google Scholar 

  24. 24.

    Hudson, T. C., M. C. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-COLLIDE: accelerated collision detection for VRML. In: Proceedings of the second symposium on Virtual reality modeling language, 1997, pp.117–123.

  25. 25.

    Jones, B. A. and I. D. Walker. Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1):43–55, 2006.

    Article  Google Scholar 

  26. 26.

    Kalmey, J. K., J. Thewissen, and D. E. Dluzen. Age-related size reduction of foramina in the cribriform plate. Anat. Record 251(3):326–329, 1998.

    Article  CAS  Google Scholar 

  27. 27.

    Kavoi, B. M. and H. Jameela. Comparative morphometry of the olfactory bulb, tract and stria in the human, dog and goat. Int. J. Morphol. 29(3):939–946, 2011.

    Article  Google Scholar 

  28. 28.

    Lavoie, J., P. Gass Astorga, H. Segal-Gavish, Y. Wu, Y. Chung, N. Cascella, A. Sawa, and K. Ishizuka. The olfactory neural epithelium as a tool in neuroscience. Trends Mol. Med. 23(2):100–103, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Lorensen, W. E. and H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Comput. Graph. 21(4):163–169, 1987.

    Article  Google Scholar 

  30. 30.

    Moench, T., R. Gasteiger, G. Janiga, H. Theisel, and B. Preim. Context-aware mesh smoothing for biomedical applications. Comput. Graph. 35(4):755–767, 2011.

    Article  Google Scholar 

  31. 31.

    Moon, C., S. J. Yoo, and H. S. Han. Smell, Encyclopedia of the Neurological Sciences, 2nd ed. Cambridge: Academic Press, 2014, pp. 216–220.

    Google Scholar 

  32. 32.

    Renevier R., Tamadazte B., Rabenorosoa K., Tavernier L., and Andreff N. Endoscopic laser surgery: design, modeling and control. IEEE/ASME Trans. Mech. 22(1):99–106, 2017.

    Article  Google Scholar 

  33. 33.

    Robert J. Webster, I. and B. A. Jones. Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13):1661–1683, 2010.

    Article  Google Scholar 

  34. 34.

    Savvateeva, D. M., C. Güldner, T. Murthum, S. Bien, A. Teymoortash, J. A. Werner, and M. Bremke. Digital volume tomography (DVT) measurements of the olfactory cleft and olfactory fossa. Acta Oto-Laryngol. 130(3):398–404, 2010.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the French National Agency for Research within the Biomedical Innovation program (NEMRO ANR-14-CE17-0013), and the Investissements d’Avenir (Robotex ANR-10-EQPX-44, Labex CAMI ANR-11-LABX-0004 and Labex ACTION ANR-11-LABX-0001-01).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cédric Girerd.

Additional information

Associate Editor Cameron N. Riviere oversaw the review of this article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Girerd, C., Lihoreau, T., Rabenorosoa, K. et al. In Vivo Inspection of the Olfactory Epithelium: Feasibility of Robotized Optical Biopsy. Ann Biomed Eng 46, 1951–1961 (2018). https://doi.org/10.1007/s10439-018-2076-9

Download citation

Keywords

  • Olfactory epithelium
  • ENT
  • Robot-assisted intervention
  • Continuum robot
  • OCT