Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 10, pp 1582–1594 | Cite as

Closed-Loop Active Compensation for Needle Deflection and Target Shift During Cooperatively Controlled Robotic Needle Insertion

  • Marek Wartenberg
  • Joseph Schornak
  • Katie Gandomi
  • Paulo Carvalho
  • Chris Nycz
  • Niravkumar Patel
  • Iulian Iordachita
  • Clare Tempany
  • Nobuhiko Hata
  • Junichi Tokuda
  • Gregory S. Fischer
Medical Robotics

Abstract

Intra-operative imaging is sometimes available to assist needle biopsy, but typical open-loop insertion does not account for unmodeled needle deflection or target shift. Closed-loop image-guided compensation for deviation from an initial straight-line trajectory through rotational control of an asymmetric tip can reduce targeting error. Incorporating robotic closed-loop control often reduces physician interaction with the patient, but by pairing closed-loop trajectory compensation with hands-on cooperatively controlled insertion, a physician’s control of the procedure can be maintained while incorporating benefits of robotic accuracy. A series of needle insertions were performed with a typical 18G needle using closed-loop active compensation under both fully autonomous and user-directed cooperative control. We demonstrated equivalent improvement in accuracy while maintaining physician-in-the-loop control with no statistically significant difference (p > 0.05) in the targeting accuracy between any pair of autonomous or individual cooperative sets, with average targeting accuracy of 3.56 mmrms. With cooperatively controlled insertions and target shift between 1 and 10 mm introduced upon needle contact, the system was able to effectively compensate up to the point where error approached a maximum curvature governed by bending mechanics. These results show closed-loop active compensation can enhance targeting accuracy, and that the improvement can be maintained under user directed cooperative insertion.

Keywords

Image-guided therapy Medical robotics Teleoperation Needle steering 

Notes

Acknowledgments

This research was funded by NIH R01 CA111288, NIH R01 CA166379 and NIH R01 EB020667.

Disclosure

NH has a financial interest in Harmonus, a company developing Image Guided Therapy products. NH’s interests were reviewed and are managed by Brigham and Women’s Hospital and Partners HealthCare in accordance with their conflict of interest policies.

References

  1. 1.
    Abayazid, M., R. J. Roesthuis, R. Reilink, and S. Misra. Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Trans. Rob. 29(2):542–553, 2013.CrossRefGoogle Scholar
  2. 2.
    Ahn, B., J. Kim, L. Ian, K. Rha, and H. Kim. Mechanical property characterization of prostate cancer using minimally motorized indenter in an ex vivo indentation experiment. Urology 76(4):1007–1011, 2010.CrossRefGoogle Scholar
  3. 3.
    Bettini, A., S. Land, A. Okamura, and G. Hager. Vision assisted control for manipulation using virtual fixtures. IEEE Trans. Rob. 20(6):953–966, 2004.CrossRefGoogle Scholar
  4. 4.
    Elayaperumal, S., J. H. Bae, D. Christensen, M. R. Cutkosky, B. L. Daniel, R. J. Black, J. M. Costa, F. Faridian, and B. Moslehi. MR-compatible biopsy needle with enhanced tip force sensing. IEEE World Haptics Conference, pp. 109–114, 2013.Google Scholar
  5. 5.
    Elayaperumal, S., J. H. Bae, B. L. Daniel, M. R. Cutkosky. Detection of membrane puncture with haptic feedback using a tip-force sensing needle. IEEE International Conference on Intelligent Robots and Systems, pp. 3975–3981, 2014.Google Scholar
  6. 6.
    Engh, J. A., D. S. Minhas, D. Kondziolka, and C. N. Riviere. Percutaneous intercerebral navigation by duty-cycled spinning of flexible bevel tipped needles. Neurosurgery 67(4):1117–1123, 2010.CrossRefGoogle Scholar
  7. 7.
    Eslami, S., W. Shang, G. Li, N. Patel, G. S. Fischer, J. Tokuda, N. Hata, C. M. Tempany, and I. Iordachita. In-bore prostate transperineal interventions with an MRI-guided parallel manipulator: system development and preliminary evaluation. Int. J. Med. Robot. Comput. Assist. Surg. 12(2):98–109, 2015.Google Scholar
  8. 8.
    Farneback, G. Two-frame motion estimation based on polynomial expansion. In: Image Analysis, edited by J. Bigun, and T. Gustavsson. Heidelberg: Springer, 2003, pp. 363–370.CrossRefGoogle Scholar
  9. 9.
    Hoyt, K., B. Casteneda, M. Zhang, P. Nigwekar, P. A. di Sant’Agnese, J. V. Joseph, J. Strang, D. Rubens, and J. Parker. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 4(4–5):213–225, 2001.Google Scholar
  10. 10.
    Hungr, N., J. Long, V. Beix, and J. Troccaz. A realistic deformable prostate phantom for multimodal imaging and needle-insertion procedures. Med. Phys. 39(4):2031–2041, 2012.CrossRefGoogle Scholar
  11. 11.
    Jacopec, M., S. J. Harris, F. Rodrigues y Baena, P. Gomes, J. Cobb, and B. Davies. The first clinical application of a hands-on robotic knee surgery system. Comput. Aided Surg. 6:329–339, 2001.CrossRefGoogle Scholar
  12. 12.
    Li, G. Robotic System Development for Precision MRI-Guided Needle-Based Interventions. PhD Dissertation, Department of Mechanical Engineering, June 2016.Google Scholar
  13. 13.
    Megali, G., O. Tonet, C. Stefanini, M. Boccadoro, V. Papaspyropoulos, L. Angelini, and P. Dario. A computer-assisted robotic ultrasound-guided biopsy system for video-assisted surgery. Medical Image Computing and Computer-Assisted Intervention, (MICCAI), pp. 343–350, 2016.Google Scholar
  14. 14.
    Minhas, D. S., J. A. Engh, M. M. Fenske, and C. N. Riviere. Modeling of needle steering via duty-cycled spinning. IEEE International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 2756–2759, 2017.Google Scholar
  15. 15.
    Nycz, C. J., R. Gondokaryono, P. Carvalho, N. Patel, M. Wartenberg, J. G. Pilitsis, and G. S. Fischer. Mechanical validation of an MRI compatible stereotactic neurosurgery robot in preparation for pre-clinical trials. International Conference on Intelligent Robots and Systems (IROS), 2017.Google Scholar
  16. 16.
    Okamura, A. M., C. Simone, and M. D. O’Leary. Force modeling for needle insertion into soft tissue. IEEE Trans. Biomed. Eng. 10(51):1707–1716, 2004.CrossRefGoogle Scholar
  17. 17.
    Pacchierotti, C., M. Abayazid, S. Misra, and D. Prattichizzo. Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback. IEEE Trans. Haptics 7(4):551–556, 2014.CrossRefGoogle Scholar
  18. 18.
    Patel, N. A., T. van Katwijk, G. Li, P. Moreira, W. Shang, S. Misra, and G. S. Fischer. Closed-loop asymmetric-tip needle steering under continuous intraoperative MRI guidance. IEEE International Conference on Engineering in Medicine and Biology Society (EMBC), pp. 6687–6690, 2015.Google Scholar
  19. 19.
    Podder, T., D. Clark, J. Sherman, D. Fuller, E. Messing, D. Rubens, J. Strang, R. Brasacchio, L. Liao, W. Ng, and Y. Yu. In vivo motion and force measurement of surgical needle intervention during prostate brachytherapy. Med. Phys. 33(8):2915–2922, 2006.CrossRefGoogle Scholar
  20. 20.
    Prasad, S. K., M. Kitagawa, G. S. Fischer, J. Zand, M. A. Talamini, R. H. Taylor, and A. M. Okamura. A modular 2-DOF force-sensing instrument for laproscopic surgery. Medical Image Computing and Computer Assisted Interventions Conference (MICCAI), pp. 279–286, 2013.Google Scholar
  21. 21.
    Rossa, C., N. Usmani, R. Sloboda, and M. Tavakoli. A hand-held assistant for semiautomated percutaneous needle steering. IEEE Trans. Biomed. Eng. 64(3):637–648, 2017.CrossRefGoogle Scholar
  22. 22.
    Schneider, O., J. Troccaz, O. Chavanon, and D. Blin. PADyC: a synergistic robot for cardiac puncturing. IEEE International Conference on Robotics and Automation (ICRA), pp. 2883–2888, 2000.Google Scholar
  23. 23.
    Stoianovici, D., C. Kim, G. Srimathveeravalli, P. Sebrecht, D. Petrisor, J. Coleman, S. B. Solomon, and H. Hricak. MRI-safe robot for endorectal prostate biopsy. IEEE Trans. Mechatron. 19(4):1289–1299, 2014.CrossRefGoogle Scholar
  24. 24.
    Swensen, J. P. and N. J. Cowan. Torsional dynamics compensation enhances robotic control of tip-steerable needles. IEEE International Conference on Robotics and Automation (ICRA), pp. 1601–1606, 2012.Google Scholar
  25. 25.
    Tokuda, J., G. S. Fischer, X. Papademetris, Z. Yaniv, L. Ibanex, P. Cheng, H. Liu, J. Blevins, J. Arata, A. J. Golby, T. Kapur, S. Pieper, E. C. Burdette, G. Fichtinger, C. M. Tempany, and N. Hata. OpenIGTLink: an open network protocol for image-guided therapy environment. International Journal of Medical Robotics 5(4):423–434, 2009.CrossRefGoogle Scholar
  26. 26.
    Tokuda, J., K. Tuncali, G. Li, N. Patel, T. Heffter, G. S. Fischer, I. Iordachita, E. C. Burdette, N. Hata, and C. Tempany. In-Bore MRI-Guided transperineal prostate biopsy using 4-DOF needle-guide manipulator. International Society for Magnetic Resonance in Medicine, 2016.Google Scholar
  27. 27.
    Troccaz, J., M. Peshkin, and B. Davies. Guiding systems for computer aided surgery: introducing synergistic devise and discussing the different approaches. Med. Image Anal. 2(2):101–118, 1998.CrossRefGoogle Scholar
  28. 28.
    Tse, Z. T. H., H. Elhawary, M. Rea, B. Davies, I. Young, and M. Lamperth. Haptic needle unit for MR-guided biopsy and its control. IEEE Trans. Mechatron. 17(1):183–187, 2012.CrossRefGoogle Scholar
  29. 29.
    Vigaru, B., D. Petrisor, A. Patriciu, D. Mazilu, and D. Stoianovici. MR compatible actuation for medical instrumentation. IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 49–52, 2008.Google Scholar
  30. 30.
    Vrooijink, G. J., M. Abayazid, S. Patil, R. Alterovitz, and S. Misra. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. Int. J. Robot. Res. 33(10):1361–1374, 2014.CrossRefGoogle Scholar
  31. 31.
    Wartenberg, M., J. Schornak, P. Carvalho, N. Patel, I. Iordachita, C. Tempany, N. Hata, J. Tokuda, and G. S. Fischer. Closed-loop autonomous needle steering during cooperatively controlled needle insertions for MRI-guided pelvic interventions. The 10th Hamlyn Symposium on Medical Robotics, pp. 33–34, 2017.Google Scholar
  32. 32.
    Webster, J., J. S. Kim, N. J. Cowan, G. S. Chirikjian, and A. M. Okamura. Nonholonomic modeling of needle steering. Int. J. Robot. Res. 25(5–6):509–524, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Marek Wartenberg
    • 1
  • Joseph Schornak
    • 1
  • Katie Gandomi
    • 1
  • Paulo Carvalho
    • 1
  • Chris Nycz
    • 1
  • Niravkumar Patel
    • 2
  • Iulian Iordachita
    • 2
  • Clare Tempany
    • 3
  • Nobuhiko Hata
    • 3
  • Junichi Tokuda
    • 3
  • Gregory S. Fischer
    • 1
  1. 1.Robotics EngineeringWorcester Polytechnic InstituteWorcesterUSA
  2. 2.Johns Hopkins UniversityBaltimoreUSA
  3. 3.Brigham and Women’s HospitalBostonUSA

Personalised recommendations