Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 11, pp 1806–1815 | Cite as

Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living

  • Donald R. Hume
  • Vasiliki Kefala
  • Michael D. Harris
  • Kevin B. Shelburne
Article

Abstract

Movement of the marker positions relative to the body segments obscures in vivo joint level motion. Alternatively, tracking bones from radiography images can provide precise motion of the bones at the knee but is impracticable for measurement of body segment motion. Consequently, researchers have combined marker-based knee flexion with kinematic splines to approximate the translations and rotations of the tibia relative to the femur. Yet, the accuracy of predicting six degree-of-freedom joint kinematics using kinematic splines has not been evaluated. The objectives of this study were to (1) compare knee kinematics measured with a marker-based motion capture system to kinematics acquired with high speed stereo radiography (HSSR) and describe the accuracy of marker-based motion to improve interpretation of results from these methods, and (2) use HSSR to define and evaluate a new set of knee joint kinematic splines based on the in vivo kinematics of a knee extension activity. Simultaneous measurements were recorded from eight healthy subjects using HSSR and marker-based motion capture. The marker positions were applied to three models of the lower extremity to calculate tibiofemoral kinematics and compared to kinematics acquired with HSSR. As demonstrated by normalized RMSE above 1.0, varus–valgus rotation (1.26), medial–lateral (1.26), anterior–posterior (2.03), and superior–inferior translations (4.39) were not accurately measured. Using kinematic splines improved predictions in varus–valgus (0.81) rotation, and medial–lateral (0.73), anterior–posterior (0.69), and superior–inferior (0.49) translations. Using splines to predict tibiofemoral kinematics as a function knee flexion can lead to improved accuracy over marker-based motion capture alone, however this technique was limited in reproducing subject-specific kinematics.

Keywords

Musculoskeletal modeling Tibiofemoral Fluoroscopy Motion capture 

Notes

Acknowledgments

Supported by a National Science Foundation Major Research Instrumentation award (12-29148) and by the NIH National Institute of Biomedical Imaging and Bioengineering Grant R01EB015497.

References

  1. 1.
    Akbarshahi, M., A. G. Schache, J. W. Fernandez, R. Baker, S. Banks, and M. G. Pandy. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J. Biomech. 43:1292–1301, 2010.CrossRefPubMedGoogle Scholar
  2. 2.
    Ali, A. A., M. D. Harris, S. Shalhoub, L. P. Maletsky, P. J. Rullkoetter, and K. B. Shelburne. Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions. J. Biomech. 57:117–124, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Anderst, W., R. Zauel, J. Bishop, E. Demps, and S. Tashman. Validation of three-dimensional model-based tibio-femoral tracking during running. Med. Eng. Phys. 31:10–16, 2009.CrossRefPubMedGoogle Scholar
  4. 4.
    Andriacchi, T. P., E. J. Alexander, M. K. Toney, C. Dyrby, and J. Sum. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J. Biomech. Eng. 120:743–749, 1998.CrossRefPubMedGoogle Scholar
  5. 5.
    Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.CrossRefPubMedGoogle Scholar
  6. 6.
    Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Cappozzo, A., F. Catani, A. Leardini, M. G. Benedetti, and U. Della Croce. Position and orientation in space of bones during movement: experimental artefacts. Clin. Biomech. 11:90–100, 1996.CrossRefGoogle Scholar
  8. 8.
    Cereatti, A., T. Bonci, M. Akbarshahi, K. Aminian, A. Barré, M. Begon, D. L. Benoit, C. Charbonnier, F. Dal Maso, S. Fantozzi, C. C. Lin, T. W. Lu, M. G. Pandy, R. Stagni, A. J. van den Bogert, and V. Camomilla. Standardization proposal of soft tissue artefact description for data sharing in human motion measurements. J. Biomech. 62:5–13, 2017.CrossRefPubMedGoogle Scholar
  9. 9.
    Clary, C. W., C. K. Fitzpatrick, L. P. Maletsky, and P. J. Rullkoetter. The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study. J. Biomech. 46:1351–1357, 2013.CrossRefPubMedGoogle Scholar
  10. 10.
    Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.CrossRefPubMedGoogle Scholar
  11. 11.
    Gaffney, B. M., M. D. Harris, B. S. Davidson, J. E. Stevens-Lapsley, C. L. Christiansen, and K. B. Shelburne. Multi-joint compensatory effects of unilateral total knee arthroplasty during high-demand tasks. Ann. Biomed. Eng. 44:2529–2541, 2016.CrossRefPubMedGoogle Scholar
  12. 12.
    Harris, M. D., A. J. Cyr, A. A. Ali, C. K. Fitzpatrick, P. J. Rullkoetter, L. P. Maletsky, and K. B. Shelburne. A combined experimental and computational approach to subject-specific analysis of knee joint laxity. J. Biomech. Eng. 138:81004, 2016.CrossRefGoogle Scholar
  13. 13.
    Heyse, T. J., J. Slane, G. Peersman, M. Dirckx, A. van de Vyver, P. Dworschak, S. Fuchs-Winkelmann, and L. Scheys. Kinematics of a bicruciate-retaining total knee arthroplasty. Knee Surg. Sport. Traumatol. Arthrosc. 2017.  https://doi.org/10.1007/s00167-016-4414-5.Google Scholar
  14. 14.
    Ivester, J. C., A. J. Cyr, M. D. Harris, M. J. Kulis, P. J. Rullkoetter, and K. B. Shelburne. A reconfigurable high-speed stereo-radiography system for sub-millimeter measurement of in vivo joint kinematics. J. Med. Device 9:41009, 2015.CrossRefGoogle Scholar
  15. 15.
    Kadaba, M. P., H. K. Ramakrishnan, and M. E. Wootten. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8:383–392, 1990.CrossRefPubMedGoogle Scholar
  16. 16.
    Kefala, V., A. J. Cyr, M. D. Harris, D. R. Hume, B. S. Davidson, R. H. Kim, and K. B. Shelburne. Assessment of knee kinematics in older adults using high-speed stereo radiography. Med. Sci. Sport. Exerc. 2017.  https://doi.org/10.1249/mss.0000000000001350.Google Scholar
  17. 17.
    Kim, H. Y., K. J. Kim, D. S. Yang, S. W. Jeung, H. G. Choi, and W. S. Choy. Screw-home movement of the tibiofemoral joint during normal gait: three-dimensional analysis. Clin. Orthop. Surg. 7:303, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lerner, Z. F., W. J. Board, and R. C. Browning. Effects of obesity on lower extremity muscle function during walking at two speeds. Gait Posture 39:978–984, 2014.CrossRefPubMedGoogle Scholar
  19. 19.
    Li, G., T. H. Wuerz, and L. E. DeFrate. Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J. Biomech. Eng. 126:314–318, 2004.CrossRefPubMedGoogle Scholar
  20. 20.
    Li, K., L. Zheng, S. Tashman, and X. Zhang. The inaccuracy of surface-measured model-derived tibiofemoral kinematics. J. Biomech. 45:2719–2723, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lu, T. W., and J. J. O’Connor. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32:129–134, 1999.CrossRefPubMedGoogle Scholar
  22. 22.
    Miranda, D. L., J. B. Schwartz, A. C. Loomis, E. L. Brainerd, B. C. Fleming, and J. J. Crisco. Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J. Biomech. Eng. 133:121002, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Moglo, K. E., and A. Shirazi-Adl. Cruciate coupling and screw-home mechanism in passive knee joint during extension-flexion. J. Biomech. 38:1075–1083, 2005.CrossRefPubMedGoogle Scholar
  24. 24.
    Navacchia, A., V. Kefala, and K. B. Shelburne. Dependence of muscle moment arms on in vivo three-dimensional kinematics of the knee. Ann. Biomed. Eng. 45:789–798, 2017.CrossRefPubMedGoogle Scholar
  25. 25.
    Navacchia, A., P. J. Rullkoetter, P. Schütz, R. B. List, C. K. Fitzpatrick, and K. B. Shelburne. Subject-specific modeling of muscle force and knee contact in total knee arthroplasty. J. Orthop. Res. 34:1576–1587, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Reinschmidt, C., A. J. Van Den Bogert, B. M. Nigg, A. Lundberg, and N. Murphy. Effect of skin movement on the analysis of skeletal knee joint motion during running. J. Biomech. 30:729–732, 1997.CrossRefPubMedGoogle Scholar
  27. 27.
    Schwechter, E. M., and W. Fitz. Design rationale for customized TKA: a new idea or revisiting the past. Curr. Rev. Musculoskelet. Med. 5:303–308, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Stagni, R., S. Fantozzi, A. Cappello, and A. Leardini. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin. Biomech. 20:320–329, 2005.CrossRefGoogle Scholar
  29. 29.
    Taylor, K. D., F. M. Mottier, D. W. Simmons, W. Cohen, R. J. Pavlak, D. P. Cornell, and G. B. Hankins. An automated motion measurement system for clinical gait analysis. J. Biomech. 15:505–516, 1982.CrossRefPubMedGoogle Scholar
  30. 30.
    Torry, M. R., K. B. Shelburne, D. S. Peterson, J. E. Giphart, J. P. Krong, C. Myers, J. R. Steadman, and S. L. Y. Woo. Knee kinematic profiles during drop landings: a biplane fluoroscopy study. Med. Sci. Sports Exerc. 43:533–541, 2011.CrossRefPubMedGoogle Scholar
  31. 31.
    Tsai, T. Y., T. W. Lu, M. Y. Kuo, and C. C. Lin. Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J. Biomech. 44:1182–1188, 2011.CrossRefPubMedGoogle Scholar
  32. 32.
    Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 1988.  https://doi.org/10.1016/0021-9290(88)90135-2.PubMedGoogle Scholar
  33. 33.
    Zhang, Y., Z. Yao, S. Wang, W. Huang, L. Ma, H. Huang, and H. Xia. Motion analysis of Chinese normal knees during gait based on a novel portable system. Gait Posture 41:763–768, 2015.CrossRefPubMedGoogle Scholar
  34. 34.
    Zheng, L., K. Li, S. Shetye, and X. Zhang. Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling. J. Biomech. 47:3217–3221, 2014.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Donald R. Hume
    • 1
  • Vasiliki Kefala
    • 1
  • Michael D. Harris
    • 2
    • 3
  • Kevin B. Shelburne
    • 4
  1. 1.Center for Orthopaedic BiomechanicsUniversity of DenverDenverUSA
  2. 2.Program in Physical of TherapyWashington University School of MedicineSt. LouisUSA
  3. 3.Department of Orthopaedic SurgeryWashington University School of MedicineSt. LouisUSA
  4. 4.Department of Mechanical and Materials EngineeringUniversity of DenverDenverUSA

Personalised recommendations