Skip to main content
Log in

Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Movement of the marker positions relative to the body segments obscures in vivo joint level motion. Alternatively, tracking bones from radiography images can provide precise motion of the bones at the knee but is impracticable for measurement of body segment motion. Consequently, researchers have combined marker-based knee flexion with kinematic splines to approximate the translations and rotations of the tibia relative to the femur. Yet, the accuracy of predicting six degree-of-freedom joint kinematics using kinematic splines has not been evaluated. The objectives of this study were to (1) compare knee kinematics measured with a marker-based motion capture system to kinematics acquired with high speed stereo radiography (HSSR) and describe the accuracy of marker-based motion to improve interpretation of results from these methods, and (2) use HSSR to define and evaluate a new set of knee joint kinematic splines based on the in vivo kinematics of a knee extension activity. Simultaneous measurements were recorded from eight healthy subjects using HSSR and marker-based motion capture. The marker positions were applied to three models of the lower extremity to calculate tibiofemoral kinematics and compared to kinematics acquired with HSSR. As demonstrated by normalized RMSE above 1.0, varus–valgus rotation (1.26), medial–lateral (1.26), anterior–posterior (2.03), and superior–inferior translations (4.39) were not accurately measured. Using kinematic splines improved predictions in varus–valgus (0.81) rotation, and medial–lateral (0.73), anterior–posterior (0.69), and superior–inferior (0.49) translations. Using splines to predict tibiofemoral kinematics as a function knee flexion can lead to improved accuracy over marker-based motion capture alone, however this technique was limited in reproducing subject-specific kinematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Akbarshahi, M., A. G. Schache, J. W. Fernandez, R. Baker, S. Banks, and M. G. Pandy. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. J. Biomech. 43:1292–1301, 2010.

    Article  PubMed  Google Scholar 

  2. Ali, A. A., M. D. Harris, S. Shalhoub, L. P. Maletsky, P. J. Rullkoetter, and K. B. Shelburne. Combined measurement and modeling of specimen-specific knee mechanics for healthy and ACL-deficient conditions. J. Biomech. 57:117–124, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Anderst, W., R. Zauel, J. Bishop, E. Demps, and S. Tashman. Validation of three-dimensional model-based tibio-femoral tracking during running. Med. Eng. Phys. 31:10–16, 2009.

    Article  PubMed  Google Scholar 

  4. Andriacchi, T. P., E. J. Alexander, M. K. Toney, C. Dyrby, and J. Sum. A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J. Biomech. Eng. 120:743–749, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Arnold, E. M., S. R. Ward, R. L. Lieber, and S. L. Delp. A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38:269–279, 2010.

    Article  PubMed  Google Scholar 

  6. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164, 2006.

    Article  PubMed  Google Scholar 

  7. Cappozzo, A., F. Catani, A. Leardini, M. G. Benedetti, and U. Della Croce. Position and orientation in space of bones during movement: experimental artefacts. Clin. Biomech. 11:90–100, 1996.

    Article  CAS  Google Scholar 

  8. Cereatti, A., T. Bonci, M. Akbarshahi, K. Aminian, A. Barré, M. Begon, D. L. Benoit, C. Charbonnier, F. Dal Maso, S. Fantozzi, C. C. Lin, T. W. Lu, M. G. Pandy, R. Stagni, A. J. van den Bogert, and V. Camomilla. Standardization proposal of soft tissue artefact description for data sharing in human motion measurements. J. Biomech. 62:5–13, 2017.

    Article  PubMed  Google Scholar 

  9. Clary, C. W., C. K. Fitzpatrick, L. P. Maletsky, and P. J. Rullkoetter. The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study. J. Biomech. 46:1351–1357, 2013.

    Article  PubMed  Google Scholar 

  10. Delp, S. L., J. P. Loan, M. G. Hoy, F. E. Zajac, E. L. Topp, and J. M. Rosen. An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37:757–767, 1990.

    Article  CAS  PubMed  Google Scholar 

  11. Gaffney, B. M., M. D. Harris, B. S. Davidson, J. E. Stevens-Lapsley, C. L. Christiansen, and K. B. Shelburne. Multi-joint compensatory effects of unilateral total knee arthroplasty during high-demand tasks. Ann. Biomed. Eng. 44:2529–2541, 2016.

    Article  PubMed  Google Scholar 

  12. Harris, M. D., A. J. Cyr, A. A. Ali, C. K. Fitzpatrick, P. J. Rullkoetter, L. P. Maletsky, and K. B. Shelburne. A combined experimental and computational approach to subject-specific analysis of knee joint laxity. J. Biomech. Eng. 138:81004, 2016.

    Article  Google Scholar 

  13. Heyse, T. J., J. Slane, G. Peersman, M. Dirckx, A. van de Vyver, P. Dworschak, S. Fuchs-Winkelmann, and L. Scheys. Kinematics of a bicruciate-retaining total knee arthroplasty. Knee Surg. Sport. Traumatol. Arthrosc. 2017. https://doi.org/10.1007/s00167-016-4414-5.

    Article  Google Scholar 

  14. Ivester, J. C., A. J. Cyr, M. D. Harris, M. J. Kulis, P. J. Rullkoetter, and K. B. Shelburne. A reconfigurable high-speed stereo-radiography system for sub-millimeter measurement of in vivo joint kinematics. J. Med. Device 9:41009, 2015.

    Article  Google Scholar 

  15. Kadaba, M. P., H. K. Ramakrishnan, and M. E. Wootten. Measurement of lower extremity kinematics during level walking. J. Orthop. Res. 8:383–392, 1990.

    Article  CAS  PubMed  Google Scholar 

  16. Kefala, V., A. J. Cyr, M. D. Harris, D. R. Hume, B. S. Davidson, R. H. Kim, and K. B. Shelburne. Assessment of knee kinematics in older adults using high-speed stereo radiography. Med. Sci. Sport. Exerc. 2017. https://doi.org/10.1249/mss.0000000000001350.

    Article  Google Scholar 

  17. Kim, H. Y., K. J. Kim, D. S. Yang, S. W. Jeung, H. G. Choi, and W. S. Choy. Screw-home movement of the tibiofemoral joint during normal gait: three-dimensional analysis. Clin. Orthop. Surg. 7:303, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lerner, Z. F., W. J. Board, and R. C. Browning. Effects of obesity on lower extremity muscle function during walking at two speeds. Gait Posture 39:978–984, 2014.

    Article  PubMed  Google Scholar 

  19. Li, G., T. H. Wuerz, and L. E. DeFrate. Feasibility of using orthogonal fluoroscopic images to measure in vivo joint kinematics. J. Biomech. Eng. 126:314–318, 2004.

    Article  PubMed  Google Scholar 

  20. Li, K., L. Zheng, S. Tashman, and X. Zhang. The inaccuracy of surface-measured model-derived tibiofemoral kinematics. J. Biomech. 45:2719–2723, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu, T. W., and J. J. O’Connor. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32:129–134, 1999.

    Article  CAS  PubMed  Google Scholar 

  22. Miranda, D. L., J. B. Schwartz, A. C. Loomis, E. L. Brainerd, B. C. Fleming, and J. J. Crisco. Static and dynamic error of a biplanar videoradiography system using marker-based and markerless tracking techniques. J. Biomech. Eng. 133:121002, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moglo, K. E., and A. Shirazi-Adl. Cruciate coupling and screw-home mechanism in passive knee joint during extension-flexion. J. Biomech. 38:1075–1083, 2005.

    Article  CAS  PubMed  Google Scholar 

  24. Navacchia, A., V. Kefala, and K. B. Shelburne. Dependence of muscle moment arms on in vivo three-dimensional kinematics of the knee. Ann. Biomed. Eng. 45:789–798, 2017.

    Article  PubMed  Google Scholar 

  25. Navacchia, A., P. J. Rullkoetter, P. Schütz, R. B. List, C. K. Fitzpatrick, and K. B. Shelburne. Subject-specific modeling of muscle force and knee contact in total knee arthroplasty. J. Orthop. Res. 34:1576–1587, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reinschmidt, C., A. J. Van Den Bogert, B. M. Nigg, A. Lundberg, and N. Murphy. Effect of skin movement on the analysis of skeletal knee joint motion during running. J. Biomech. 30:729–732, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Schwechter, E. M., and W. Fitz. Design rationale for customized TKA: a new idea or revisiting the past. Curr. Rev. Musculoskelet. Med. 5:303–308, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stagni, R., S. Fantozzi, A. Cappello, and A. Leardini. Quantification of soft tissue artefact in motion analysis by combining 3D fluoroscopy and stereophotogrammetry: a study on two subjects. Clin. Biomech. 20:320–329, 2005.

    Article  Google Scholar 

  29. Taylor, K. D., F. M. Mottier, D. W. Simmons, W. Cohen, R. J. Pavlak, D. P. Cornell, and G. B. Hankins. An automated motion measurement system for clinical gait analysis. J. Biomech. 15:505–516, 1982.

    Article  CAS  PubMed  Google Scholar 

  30. Torry, M. R., K. B. Shelburne, D. S. Peterson, J. E. Giphart, J. P. Krong, C. Myers, J. R. Steadman, and S. L. Y. Woo. Knee kinematic profiles during drop landings: a biplane fluoroscopy study. Med. Sci. Sports Exerc. 43:533–541, 2011.

    Article  PubMed  Google Scholar 

  31. Tsai, T. Y., T. W. Lu, M. Y. Kuo, and C. C. Lin. Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. J. Biomech. 44:1182–1188, 2011.

    Article  PubMed  Google Scholar 

  32. Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 1988. https://doi.org/10.1016/0021-9290(88)90135-2.

    Article  PubMed  Google Scholar 

  33. Zhang, Y., Z. Yao, S. Wang, W. Huang, L. Ma, H. Huang, and H. Xia. Motion analysis of Chinese normal knees during gait based on a novel portable system. Gait Posture 41:763–768, 2015.

    Article  PubMed  Google Scholar 

  34. Zheng, L., K. Li, S. Shetye, and X. Zhang. Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling. J. Biomech. 47:3217–3221, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Supported by a National Science Foundation Major Research Instrumentation award (12-29148) and by the NIH National Institute of Biomedical Imaging and Bioengineering Grant R01EB015497.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin B. Shelburne.

Additional information

Associate Editor Michael R. Torry oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hume, D.R., Kefala, V., Harris, M.D. et al. Comparison of Marker-Based and Stereo Radiography Knee Kinematics in Activities of Daily Living. Ann Biomed Eng 46, 1806–1815 (2018). https://doi.org/10.1007/s10439-018-2068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2068-9

Keywords

Navigation