Abstract
Retinal Vein Occlusion (RVO) is a blinding disease caused by one or more occluded retinal veins. Current treatment methods only focus on symptom mitigation rather than targeting a solution for the root cause of the disorder. Retinal vein cannulation is an experimental eye surgical procedure which could potentially cure RVO. Its goal is to dissolve the occlusion by injecting an anticoagulant directly into the blocked vein. Given the scale and the fragility of retinal veins on one end and surgeons’ limited positioning precision on the other, performing this procedure manually is considered to be too risky. The authors have been developing robotic devices and instruments to assist surgeons in performing this therapy in a safe and successful manner. This work reports on the clinical translation of the technology, resulting in the world-first in-human robot-assisted retinal vein cannulation. Four RVO patients have been treated with the technology in the context of a phase I clinical trial. The results show that it is technically feasible to safely inject an anticoagulant into a \(100\,{\mu} {\rm m}\)-thick retinal vein of an RVO patient for a period of 10 min with the aid of the presented robotic technology and instrumentation.
Similar content being viewed by others
References
Das, H., T. I. M. Ohm, C. Boswell, R. O. B. Steele, and G. Rodriguez. Robot-Assisted Microsurgery Development at JPL. In: Information Technologies in Medicine, Vol. II, pp. 85–99, 2001.
Donald, T. Robot assists with injections for RVO. Retina Today, pp. 59–61, 2017.
Feltgen, N., B. Junker, H. Agostini, and L. L. Hansen. Retinal Endovascular Lysis in Ischemic Central Retinal Vein Occlusion. One-Year Results of a Pilot Study. Ophthalmology 114:716–724, 2007.
Fleming, I., M. Balicki, J. Koo, I. Iordachita, B. Mitchell, J. Handa, G. Hager, and R. Taylor. Cooperative robot assistant for retinal microsurgery. In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2008. MICCAI 2008. Lecture Notes in Computer Science, pp. 543–550, 2008.
Gijbels, A., D. Reynaerts, and E. B. Vander Poorten. Design of 4-DOF parallelogram-based RCM mechanisms with a translational DOF implemented distal from the end-effector. In: Advances on Theory and Practice of Robots and Manipulators: Proceedings of Romansy 2014 XX CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, pp. 103–111, 2014.
Gijbels, A., E. B. Vander Poorten, B. Gorissen, A. Devreker, P. Stalmans, and D. Reynaerts. Experimental validation of a robotic comanipulation and telemanipulation system for retinal surgery. In: 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 144–150, 2014.
Gijbels, A., E. B. Vander Poorten, P. Stalmans, and D. Reynaerts. Development and experimental validation of a force sensing needle for robotically assisted retinal vein cannulations. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2270–2276, 2015.
Gijbels, A., E. B. Vander Poorten, P. Stalmans, H. Van Brussel, and D. Reynaerts. Design of a teleoperated robotic system for retinal surgery. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2357–2363, 2014.
Gijbels, A., K. Willekens, L. Esteveny, P. Stalmans, D. Reynaerts, and E. B. Vander Poorten. Towards a clinically applicable robotic assistance system for retinal vein cannulation. In: 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 284–291, 2016.
He, X., D. Roppenecker, D. Gierlach, M. Balicki, K. Olds, P. Gehlbach, J. Handa, R. Taylor, and I. Iordachita. Toward clinically applicable steady-hand eye robot for vitreoretinal surgery. In: Proceedings of the ASME 2012 International Mechanical Engineering Congress & Exposition (IMECE2012), 88384, pp. 145–153, 2012.
Kummer, M. P., J. J. Abbott, B. E. Kratochvil, R. Borer, A. Sengul, and B. J. Nelson. OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. In: 2010 IEEE International Conference on Robotics and Automation, pp. 1610–1616, 2010.
Maclachlan, R. A., B. C. Becker, J. C. Tabar, G. W. Podnar, L. A. Lobes, C. N. Riviere, J. Cuevas Tabares, G. W. Podnar, L. A. Lobes, and C. N. Riviere. Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans. Robot. 28:195–212, 2012.
Meenink, H. C. M., R. Hendrix, P. C. J. N. Rosielle, M. Steinbuch, H. Nijmeijer, and M. De Smet. A master-slave robot for vitreo-retinal eye surgery. In: Proceedings of the euspen International Conference, June, pp. 3–6. 2010.
Meenink, H. C. M., R. Hendrix, P. C. J. N. Rosielle, M. Steinbuch, H. Nijmeijer, and M. De Smet. A master-slave robot for vitreo-retinal eye surgery. In: Proceedings of the euspen International Conference, June, pp. 3–6, 2010.
Noda, Y., Y. Ida, S. Tanaka, T. Toyama, M. F. Roggia, Y. Tamaki, N. Sugita, M. Mitsuishi, and T. Ueta. Impact of Robotic Assistance on Precision of Vitreoretinal Surgical Procedures. PLoS ONE 8:e54116, 2013.
Riviere, C., and P. Jensen. A study of instrument motion in retinal microsurgery. In: Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1, pp. 59–60, 2000.
Rogers, S., R. L. Mcintosh, B. Grad, D. Journ, N. Cheung, L. Lim, J. J. Wang, P. Mitchell, J. W. Kowalski, H. Nguyen, and T. Y. Wong. The Prevalence of Retinal Vein Occlusion: Pooled Data from Population Studies from the United States, Europe, Asia, and Australia. Population Studies, vol. 117, pp. 1–14, 2011.
Tsui, I., A. Tsirbas, C. W. Mango, S. D. Schwartz, and J.-P. Hubschman. Robotic surgery in ophthalmology. In: Robot Surgery, edited by S. H. Baik, Chapter 10, Rijeka: InTech2010.
Wei, W., R. Goldman, N. Simaan, H. Fine, and S. Chang. Design and theoretical evaluation of micro-surgical manipulators for orbital manipulation and intraocular dexterity. In: 2007 IEEE International Conference on Robotics and Automation, April, pp. 3389–3395, 2007.
Weiss, J. N., T. E. D. C. S. Group, W. Green, C. Chan, G. Hutchins, J. Terry, A. Vine, M. Samama, B. Allf, E. de Juan, G. Steinkamp, L. Hattenbach, I. Scharrer, and C. Ohrloff. Treatment of central retinal vein occlusion by injection of tissue plasminogen activator into a retinal vein. Am. J. Ophthalmol. 126:142–144, 1998.
Willekens, K., A. Gijbels, L. Schoevaerdts, L. Esteveny, T. Janssens, J. H. M. Feyen, C. Meers, D. Reynaerts, E. B. Vander Poorten, and P. Stalmans. Robot-assisted retinal vein cannulation in an in vivo porcine retinal vein occlusion model. Acta Ophthalmol. 95:270–275, 2017.
Acknowledgments
This research was funded by the University of Leuven, an Innovation Mandate of Flanders Innovation & Entrepreneurship (HBC.5016.0250), an SB Fellowship of the Research Foundation Flanders (1S41517N) and Agentschap voor Innovatie door Wetenschap en Technologie (O&O 145046). Thrombogenics sponsored both the in-vivo preclinical study and the phase I clinical study.
Author information
Authors and Affiliations
Corresponding author
Additional information
Associate Editor Robert Merrifield oversaw the review of this article.
Andy Gijbels and Jonas Smits are designated as co-first authors.
Rights and permissions
About this article
Cite this article
Gijbels, A., Smits, J., Schoevaerdts, L. et al. In-Human Robot-Assisted Retinal Vein Cannulation, A World First. Ann Biomed Eng 46, 1676–1685 (2018). https://doi.org/10.1007/s10439-018-2053-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-018-2053-3