Skip to main content
Log in

Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Pulmonary hypertension (PH) is a chronic progressive disease characterized by elevated pulmonary arterial pressure, caused by an increase in pulmonary arterial impedance. Computational fluid dynamics (CFD) can be used to identify metrics representative of the stage of PH disease. However, experimental validation of CFD models is often not pursued due to the geometric complexity of the model or uncertainties in the reproduction of the required flow conditions. The goal of this work is to validate experimentally a CFD model of a pulmonary artery phantom using a particle image velocimetry (PIV) technique. Rapid prototyping was used for the construction of the patient-specific pulmonary geometry, derived from chest computed tomography angiography images. CFD simulations were performed with the pulmonary model with a Reynolds number matching those of the experiments. Flow rates, the velocity field, and shear stress distributions obtained with the CFD simulations were compared to their counterparts from the PIV flow visualization experiments. Computationally predicted flow rates were within 1% of the experimental measurements for three of the four branches of the CFD model. The mean velocities in four transversal planes of study were within 5.9 to 13.1% of the experimental mean velocities. Shear stresses were qualitatively similar between the two methods with some discrepancies in the regions of high velocity gradients. The fluid flow differences between the CFD model and the PIV phantom are attributed to experimental inaccuracies and the relative compliance of the phantom. This comparative analysis yielded valuable information on the accuracy of CFD predicted hemodynamics in pulmonary circulation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Reproduced from https://www.med-ed.virginia.edu/courses/rad/cxr/anatomy6chest.html.

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ambrosi, D., A. Quarteroni, and G. Rozza. Modeling of Physiological Flows. Milano: Springer, 2013.

    Google Scholar 

  2. Augst, A., D. Barratt, A. Hughes, F. Glor, S. M. Thom, and X. Yu. Accuracy and reproducibility of CFD predicted wall shear stress using 3D ultrasound images. J. Biomech. Eng. 125(2):218–222, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. Bouillot, P., O. Brina, R. Ouared, H. Yilmaz, K. Lovblad, M. Farhat, et al. Computational fluid dynamics with stents: quantitative comparison with particle image velocimetry for three commercial off the shelf intracranial stents. J Neurointerv. Surg. 8(3):309–315, 2016.

    Article  PubMed  Google Scholar 

  4. Boutsianis, E., S. Gupta, K. Boomsma, and D. Poulikakos. Boundary conditions by Schwarz-Christoffel mapping in anatomically accurate hemodynamics. Ann. Biomed. Eng. 36(12):2068–2084, 2008.

    Article  PubMed  Google Scholar 

  5. Chen, C. Y., R. Anton, M. Hung, P. Menon, E. A. Finol, and K. Pekkan. Effects of intraluminal thrombus on patient-specific abdominal aortic aneurysm hemodynamics via stereoscopic particle image velocity and computational fluid dynamics modeling. J. Biomech. Eng. 136(3):0310011, 2013.

    Google Scholar 

  6. Ford, M., H. Nikolov, J. Milner, S. Lownie, E. Demont, W. Kalata, F. Loth, D. Holdsworth, and D. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J Biomech. Eng. 130(2):021015, 2008.

    Article  PubMed  Google Scholar 

  7. Galiè, N., M. Humbert, J. L. Vachiery, S. Gibbs, I. Lang, A. Torbicki, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur. Heart J. 37:67–119, 2016.

    Article  PubMed  Google Scholar 

  8. Galiè, N., A. Torbicki, R. Barst, P. Dartevelle, S. Haworth, T. Higenbottan, et al. Guidelines on diagnosis and treatment of pulmonary arterial hypertension: the task force on diagnosis and treatment of pulmonary arterial hypertension of the European Society of Cardiology. Eur. Heart J. 25:2243–2278, 2004.

    Article  PubMed  Google Scholar 

  9. Gay, S., J. Olazagasti, J. Higginbotham, A. Gupta, A. Wurm, and J. Nguyen. Pulmonary Vasculature. Charlottesville: University of Virginia Health Sciences Center, Department of Radiology, 2013.

    Google Scholar 

  10. Hoi, Y., S. Woodward, M. Kim, D. Taulbee, and H. Meng. Validation of CFD simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128(6):844–851, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Humphrey, J. Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress. Hypertension. 52(2):195–200, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hunter, K., J. Albietz, P. Lee, S. Lanning, S. Lammers, S. Hofmeister, P. Kao, H. Qi, K. Stenmark, and R. Shandas. In vivo measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of pulmonary hypertension: development and ex vivo validation. J. Appl. Physiol. 108(4):968–975, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hunter, K., J. Feinstein, D. Ivy, and R. Shandas. Computational simulation of the pulmonary arteries and its role in the study of pediatric pulmonary hypertension. Prog. Pediatr. Cardiol. 30(1–2):63–69, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Katz, I., E. Shaughnessy, and B. Cress. A technical problem in the calculation of laminar flow near irregular surfaces described by sampled geometric data. J. Biomech. 28(4):461–464, 1995.

    Article  CAS  PubMed  Google Scholar 

  15. Khadir, M. M., A. Chaturvedi, M. S. Nguyen, J. C. Wandtke, S. Hobbs, and A. Chaturvedi. Looking beyond the thrombus: essentials of pulmonary artery imaging on CT. Insights Imaging 5(4):493–506, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kheyfets, V. O., W. O’Dell, T. Smith, J. J. Reilly, and E. A. Finol. Considerations for numerical modeling of the pulmonary circulation—a review with a focus on pulmonary hypertension. J. Biomech. Eng. 135(6):61011–61015, 2013.

    Article  CAS  PubMed  Google Scholar 

  17. Kheyfets, V., L. Rios, T. Smith, T. Schroeder, J. Mueller, S. Murali, D. Lasorda, A. Zikos, J. Spotti, J. Reilly, and E. Finol. Patient-specific computational modeling of blood flow in the pulmonary circulation. Comput. Methods Programs Biomed. 120(2):88–101, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kobs, R., N. Muvarak, J. Eickhoff, and N. Chesler. Linked mechanical and biological aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. Am. J. Physiol. Heart. Circ. Physiol. 288(3):H1209–H1217, 2005.

    Article  CAS  PubMed  Google Scholar 

  19. Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5(3):293–302, 1985.

    CAS  Google Scholar 

  20. Lammers, S., P. Kao, H. Qi, K. Hunter, C. Lanning, J. Albietz, S. Hofmeister, R. Mecham, K. Stenmark, and R. Shandas. Changes in the structure-function relationship of elastin and its impact on the proximal arterial mechanics of hypertensive calves. Am. J. Physiol. Heart. Circ. Physiol. 295(4):H1451–H1459, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J. 12(3):257, 1972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma, B., V. Ruwet, P. Corieri, R. Theunissen, M. Riethmuller, and C. Darquenne. CFD simulation and experimental validation of fluid flow and particle transport in a model of alveolated airways. J. Aerosol Sci. 40(5):403–414, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marshall, I., S. Zhao, P. Papathanasopoulou, P. Hoskins, and X. Xu. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37:679–687, 2004.

    Article  PubMed  Google Scholar 

  24. Mehta, Y., and D. Arora. Newer methods of cardiac output monitoring. World J Cardiol. 6(9):1022, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Narrow, T., M. Yoda, and S. Abdel-Khalik. A simple model for the refractive index of sodium iodide aqueous solutions. Exp Fluids. 28:282–283, 2000.

    Article  CAS  Google Scholar 

  26. Ooi, C., Z. Wang, D. Tabima, J. Eickhoff, and N. Chesler. The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension. Am. J. Physiol. Heart. Circ. Physiol. 299(6):H1823–H1831, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Parasuraman, S., S. Walker, B. L. Loudon, N. D. Gollop, A. M. Wilson, C. Lowery, and M. P. Frenneaux. Assessment of pulmonary artery pressure by echocardiography—a comprehensive review. IJC Heart Vasc. 12:45–51, 2016.

    Article  Google Scholar 

  28. Poelma, C., P. Vennemann, R. Lindken, and J. Westerweel. In vivo blood flow and wall shear stress measurements in the vitelline network. Exp. Fluids. 45(4):703–713, 2008.

    Article  CAS  Google Scholar 

  29. Ponzini, R., M. Lemma, U. Morbiducci, F. M. Montevecchi, and A. Redaelli. Doppler derived quantitative flow estimate in coronary artery bypass graft: a computational multiscale model for the evaluation of the current clinical procedure. Med. Eng. Phys. 30(7):809–816, 2008.

    Article  PubMed  Google Scholar 

  30. Prakash, S., and C. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J. Biomech. Eng. 123(2):134–144, 2001.

    Article  CAS  PubMed  Google Scholar 

  31. Proença, M., F. Braun, J. Solà, A. Adler, M. Lemay, J. P. Thiran, and S. F. Rimoldi. Non-invasive monitoring of pulmonary artery pressure from timing information by EIT: experimental evaluation during induced hypoxia. Physiol Meas 37(6):713, 2016.

    Article  PubMed  Google Scholar 

  32. Raschi, M., F. Mut, G. Byrne, C. Putman, S. Tateshima, F. Viñuela, K. Tanishita, and J. Cebral. CFD and PIV analysis of hemodynamics in a growing intracranial aneurysm. Int. J. Numer. Method Biomed. Eng. 28(2):214–228, 2012.

    Article  PubMed  Google Scholar 

  33. Schäfer, M., V. O. Kheyfets, J. D. Schroeder, J. Dunning, R. Shandas, J. K. Buckner, et al. Main pulmonary arterial wall shear stress correlates with invasive hemodynamics and stiffness in pulmonary hypertension. Pulm. Circ. 6(1):37–45, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schäfer, M., C. Myers, R. Brown, M. Frid, W. Tan, K. Hunter, and K. Stenmark. Pulmonary arterial stiffness: toward a new paradigm in pulmonary hypertension pathophysiology and assessment. Curr. Hypertens. Rep. 18(1):4, 2016.

    Article  CAS  PubMed  Google Scholar 

  35. Schreier, D., T. Hacker, G. Song, and N. Chesler. The role of collagen synthesis in ventricular and vascular adaptation to hypoxic pulmonary hypertension. J. Biomech. Eng. 135(2):0210181–0210187, 2013.

    Article  PubMed Central  Google Scholar 

  36. Sotelo, J. A., J. Urbina, I. Valverde, C. Tejos, P. Irarrazaval, D. E. Hurtado, and S. Uribe. 3D quantification of hemodynamics parameters of pulmonary artery and aorta using finite-element interpolations in 4D flow MR data. J. Cardiovasc. Magn. Reson. 17(1):1, 2015.

    Article  Google Scholar 

  37. Sun, Q., A. Groth, M. Bertram, I. Waechter, T. Bruijns, R. Hermans, et al. Experimental validation and sensitivity analysis for CFD simulations of cerebral aneurysms. Proc. IEEE Int. Symp. Biomed. Imaging 1049–1052, 2010

  38. Tang, B., S. Pickard, F. Chan, P. Tsao, C. Taylor, and J. Feinstein. Wall shear stress is decreased in the pulmonary arteries of patients with pulmonary arterial hypertension: An image-based, computational fluid dynamics study. Pulm. Circ. 2(4):470–476, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tian, L., H. Kellihan, J. Henningsen, A. Bellofiore, O. Forouzan, A. Roldán-Alzate, et al. Pulmonary artery relative area change is inversely related to ex vivo measured arterial elastic modulus in the canine model of acute pulmonary embolization. J Biomech. 47(12):2904–2910, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Tian, L., S. Lammers, P. Kao, J. Albietz, K. Stenmark, H. Qi, R. Shandas, and K. Hunter. Impact of residual stretch and remodeling on collagen engagement in healthy and pulmonary hypertensive calf pulmonary arteries at physiological pressures. Ann. Biomed. Eng. 40(7):1419–1433, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Truong, U., B. Fonseca, J. Dunning, S. Burgett, C. Lanning, D. D. Ivy, R. Shandas, K. Hunter, and A. J. Barker. Wall shear stress measured by phase contrast cardiovascular magnetic resonance in children and adolescents with pulmonary arterial hypertension. J. Cardiovasc. Magn. Reson. 15(1):1, 2013.

    Article  Google Scholar 

  42. Tu, J., G. H. Yeoh, and C. Liu. Computational Fluid Dynamics—A Practical Approach. Burlington, MA: Elsevier Inc, 2008.

    Google Scholar 

  43. Van Ertbruggen, C., P. Corieri, R. Theunissen, M. Riethmuller, and C. Darquenne. Validation of CFD predictors of flow in a 3D alveolated bend with experimental data. J Biomech. 41(2):399–405, 2008.

    Article  PubMed  Google Scholar 

  44. Wang, Z., R. Lakes, J. Eickhoff, and N. Chesler. Effects of collagen deposition on passive and active mechanical properties of large pulmonary arteries in hypoxic pulmonary hypertension. Biomech. Model. Mechanobiol. 12:1115–1125, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang, Z., R. Lakes, M. Golob, J. Eickhoff, and N. Chesler. Changes in pulmonary arterial viscoelasticity in chronic pulmonary hypertension. PLoS ONE 8(11):e78569, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weinbaum, S., X. Zhang, Y. Han, H. Vink, and S. C. Cowin. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. 100(13):7988–7995, 2003.

    Article  CAS  PubMed  Google Scholar 

  47. Wicker, R., and F. Medina. Framework for physical modeling of complex internal flow passages using rapid prototyping and water-soluble molds. In: Proceedings of the 31st International Conference on Computers and Industrial Engineering, San Francisco, CA. 23:559–564, 2013.

  48. Xu, L., M. Yang, L. Ye, and Z. Dong. Computational fluid dynamics analysis and PIV validation of a bionic vortex flow pulsatile LVAD. Technol. Health Care. 23(2):S443–S451, 2015.

    Article  PubMed  Google Scholar 

  49. Yousif, M., D. Holdsworth, and T. Poepping. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models. IEEE Eng. Med. Biol. Soc. 1412–1415, 2009.

  50. Yousif, M., D. Holdsworth, and T. Poepping. A blood-mimicking fluid for particle image velocimetry with silicone vascular models. Exp. Fluids. 50(3):769–774, 2011.

    Article  CAS  Google Scholar 

  51. Zhang, W., J. Liu, Q. Yan, J. Liu, H. Hong, and L. Mao. Computational haemodynamic analysis of left pulmonary artery angulation effects on pulmonary blood flow. Interact. CardioVasc. Thorac. Surg. 23(6), 2016.

Download references

Acknowledgments

The authors have no conflicts of interest to disclose and would like to acknowledge research funding from American Heart Association award 14GRNT19020017 and National Institutes of Health award R01HL121293. The content is solely the responsibility of the authors and does not necessarily represent the official views of the American Heart Association or the National Institutes of Health. The use of ANSYS Fluent is gratefully acknowledged through an educational licensing agreement with Ansys Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ender A. Finol.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordones, A.D., Leroux, M., Kheyfets, V.O. et al. Computational Fluid Dynamics Modeling of the Human Pulmonary Arteries with Experimental Validation. Ann Biomed Eng 46, 1309–1324 (2018). https://doi.org/10.1007/s10439-018-2047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2047-1

Keywords

Navigation