Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 10, pp 1534–1547 | Cite as

Towards Alternative Approaches for Coupling of a Soft Robotic Sleeve to the Heart

  • Markus A. Horvath
  • Claudia E. Varela
  • Eimear B. Dolan
  • William Whyte
  • David S. Monahan
  • Christopher J. Payne
  • Isaac A. Wamala
  • Nikolay V. Vasilyev
  • Frank A. Pigula
  • David J. Mooney
  • Conor J. Walsh
  • Garry P. Duffy
  • Ellen T. Roche
Medical Robotics

Abstract

Efficient coupling of soft robotic cardiac assist devices to the external surface of the heart is crucial to augment cardiac function and represents a hurdle to translation of this technology. In this work, we compare various fixation strategies for local and global coupling of a direct cardiac compression sleeve to the heart. For basal fixation, we find that a sutured Velcro band adheres the strongest to the epicardium. Next, we demonstrate that a mesh-based sleeve coupled to the myocardium improves function in an acute porcine heart failure model. Then, we analyze the biological integration of global interface material candidates (medical mesh and silicone) in a healthy and infarcted murine model and show that a mesh interface yields superior mechanical coupling via pull-off force, histology, and microcomputed tomography. These results can inform the design of a therapeutic approach where a mesh-based soft robotic DCC is implanted, allowed to biologically integrate with the epicardium, and actuated for active assistance at a later timepoint. This strategy may result in more efficient coupling of extracardiac sleeves to heart tissue, and lead to increased augmentation of heart function in end-stage heart failure patients.

Keywords

Direct cardiac compression Ventricular assist devices Device-tissue interface Biointegration 

Notes

Acknowledgments

The authors would like to thank Ronghli Liao Ph.D., Sudeshna Fisch Ph.D., and Souen Ngoy from the Brigham and Women’s Hospital Rodent Cardiovascular Physiology Core for their technical support; the staff at ARCH, Boston Children’s Hospital for help with porcine studies, James Weaver Ph.D. from the Wyss Institute at Harvard University for imaging assistance and Robert Padera M.D. Ph.D. for histological assessment. ETR acknowledges funding from the Massachusetts Institute of Technology (Institute for Medical Engineering Science and the Department of Mechanical Engineering), and the Wyss Institute for Biologically Inspired Engineering at Harvard University. WW and GD acknowledge the Irish Research Council (GOIPG/2017/927) and Science Foundation Ireland (SFI/12/RC/2278).

References

  1. 1.
    Alferness, C. U.S. Pat. No. 5,702,343. Cardiac reinforcement device. 1996.Google Scholar
  2. 2.
    Anstadt, M., R. Bartlett, J. Malone, G. Brown, S. Martin, D. Nolan, K. Oberheu, and G. L. Anstadt. Direct mechanical ventricular actuation for cardiac arrest in humans. A clinical feasibility trial. Chest 100:86–92, 1991.CrossRefPubMedGoogle Scholar
  3. 3.
    Blom, A. S., R. Mukherjee, J. J. Pilla, A. S. Lowry, W. M. Yarbrough, J. T. Mingoia, J. W. Hendrick, R. E. Stroud, J. E. McLean, J. Affuso, R. C. Gorman, J. H. Gorman, M. A. Acker, and F. G. Spinale. Cardiac support device modifies left ventricular geometry and myocardial structure after myocardial infarction. Circulation 112:1274–1283, 2005.CrossRefPubMedGoogle Scholar
  4. 4.
    Chaudhry, P. A., P. V. Anagnostopouls, T. Mishima, G. Suzuki, H. Nair, H. Morita, V. G. Sharov, C. Alferness, and H. N. Sabbah. Acute ventricular reduction with the acorn cardiac support device: effect on progressive left ventricular dysfunction and dilation in dogs with chronic heart failure. J. Card. Surg. 16:118–126, 2001.CrossRefPubMedGoogle Scholar
  5. 5.
    Costanzo, M. R., S. Maybaum, A. Bank, I. Anand, B. Rayburn, R. Ivanhoe, and W. Abraham. Ventricular elastic support therapy (VEST) in stage C heart failure-analysis from the PEERLESS-HF study. J. Card. Fail. 16:912, 2010.CrossRefGoogle Scholar
  6. 6.
    Fujimoto, K. L., K. Tobita, W. D. Merryman, J. Guan, N. Momoi, D. B. Stolz, M. S. Sacks, B. B. Keller, and W. R. Wagner. An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction. J. Am. Coll. Cardiol. 49:2292–2300, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ghanta, R. K., L. S. Lee, R. Umakanthan, R. G. Laurence, J. A. Fox, R. M. Bolman, L. H. Cohn, and F. Y. Chen. Real-time adjustment of ventricular restraint therapy in heart failure. Eur. J. Cardio-thorac. Surg. 34:1136–1140, 2008.CrossRefGoogle Scholar
  8. 8.
    Horvath, M. A., I. Wamala, E. Rytkin, E. Doyle, C. J. Payne, T. Thalhofer, I. Berra, A. Solovyeva, M. Saeed, S. Hendren, E. T. Roche, P. J. del Nido, C. J. Walsh, and N. V. Vasilyev. An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Ann. Biomed. Eng. 45:2222–2233, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kung, R. T., and M. Rosenberg. Heart booster: a pericardial support device. Ann. Thorac. Surg. 68:764–767, 1999.CrossRefPubMedGoogle Scholar
  10. 10.
    Kwon, M. H., M. Cevasco, J. D. Schmitto, and F. Y. Chen. Ventricular restraint therapy for heart failure: a review, summary of state of the art, and future directions. J. Thorac. Cardiovasc. Surg. 144:771–777.e1, 2012.CrossRefPubMedGoogle Scholar
  11. 11.
    Lee, L. S., R. K. Ghanta, S. A. Mokashi, O. Coelho-Filho, R. Y. Kwong, M. Kwon, J. Guan, R. Liao, and F. Y. Chen. Optimized ventricular restraint therapy: adjustable restraint is superior to standard restraint in an ovine model of ischemic cardiomyopathy. J. Thorac. Cardiovasc. Surg. 145:824–831, 2013.CrossRefPubMedGoogle Scholar
  12. 12.
    Mac Murray, B. C., C. C. Futran, J. Lee, K. W. O‘Brien, A. A. Amiri Moghadam, B. Mosadegh, M. N. Silberstein, J. K. Min, and R. F. Shepherd. Compliant buckled foam actuators and application in patient-specific direct cardiac compression. Soft Robot. 5:99–108, 2018.CrossRefPubMedGoogle Scholar
  13. 13.
    Mann, D. L., S. H. Kubo, H. N. Sabbah, R. C. Starling, M. Jessup, J. K. Oh, and M. A. Acker. Beneficial effects of the CorCap cardiac support device: five-year results from the Acorn Trial. J. Thorac. Cardiovasc. Surg. 143:1036–1042, 2012.CrossRefPubMedGoogle Scholar
  14. 14.
    Meister, M., and S. M. Wildhirt. Cardiac assistance device and method for the control thereof. Patent: US8944987B2. 2015.Google Scholar
  15. 15.
    Mokashi, S. A., L. S. Lee, J. D. Schmitto, R. K. Ghanta, S. McGurk, R. G. Laurence, R. M. Bolman, L. H. Cohn, and F. Y. Chen. Restraint to the left ventricle alone is superior to standard restraint. J. Thorac. Cardiovasc. Surg. 146:192–197, 2013.CrossRefPubMedGoogle Scholar
  16. 16.
    Moreno, M. R., S. Biswas, L. D. Harrison, G. Pernelle, M. W. Miller, T. W. Fossum, D. A. Nelson, and J. C. Criscione. Development of a non-blood contacting cardiac assist and support device: an in vivo proof of concept study. J. Med. Device 5:41007-1–41007-9, 2011.Google Scholar
  17. 17.
    Murphy, C. M., M. G. Haugh, and F. J. O’Brien. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466, 2010.CrossRefPubMedGoogle Scholar
  18. 18.
    Murphy, C. M., and F. J. O’Brien. Understanding the effect of mean pore size on cell activity in collagen-glycosaminoglycan scaffolds. Cell Adhes. Migr. 4:377–381, 2010.CrossRefGoogle Scholar
  19. 19.
    O’Brien, F. J. Biomaterials & scaffolds for tissue engineering. Mater. Today 14:88–95, 2011.CrossRefGoogle Scholar
  20. 20.
    O’Brien, F. J., B. A. Harley, I. V. Yannas, and L. J. Gibson. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26:433–441, 2005.CrossRefPubMedGoogle Scholar
  21. 21.
    O’Neill, C. T., N. S. Phipps, L. Cappello, S. Paganoni, and C. J. Walsh. A soft wearable robot for the shoulder: design, characterization, and preliminary testing, 2017.Google Scholar
  22. 22.
    Park, J., S. Choi, A. H. Janardhan, S.-Y. Lee, S. Raut, J. Soares, K. Shin, S. Yang, C. Lee, and K.-W. Kang. Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 8:344ra86, 2016.CrossRefPubMedGoogle Scholar
  23. 23.
    Payne, C. J., I. Wamala, C. Abah, T. Thalhofer, M. Saeed, D. Bautista-Salinas, M. A. Horvath, N. V. Vasilyev, E. T. Roche, F. A. Pigula, and C. J. Walsh. An implantable extracardiac soft robotic device for the failing heart: mechanical coupling and synchronization. Soft Robot. 2017.  https://doi.org/10.1089/soro.2016.0076.PubMedGoogle Scholar
  24. 24.
    Payne, C. J., I. Wamala, D. Bautista-Salinas, M. Saeed, D. Van Story, T. Thalhofer, M. A. Horvath, C. Abah, J. Pedro, and C. J. Walsh. Soft robotic ventricular assist device with septal bracing for therapy of heart failure. Sci. Robot. 2:6736, 2017.CrossRefGoogle Scholar
  25. 25.
    Polygerinos, P., N. Correll, S. A. Morin, B. Mosadegh, C. D. Onal, K. Petersen, M. Cianchetti, M. T. Tolley, and R. F. Shepherd. Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human–robot interaction. Adv. Eng. Mater. 2017.  https://doi.org/10.1002/adem.201700016.Google Scholar
  26. 26.
    Roche, E. T., M. A. Horvath, A. Alazmani, K. C. Galloway, N. V. Vasilyev, D. J. Mooney, F. A. Pigula, and C. J. Walsh. Design and fabrication of a soft robotic direct cardiac assist device. 2015.Google Scholar
  27. 27.
    Roche, E. T., M. A. Horvath, I. Wamala, S. E. Song, W. Whyte, Z. Machaidze, N. V. Vasilyev, D. J. Mooney, F. A. Pigula, and C. J. Walsh. Soft robotic sleeve restores heart function. Sci. Transl. Med. 9:3925, 2017.CrossRefGoogle Scholar
  28. 28.
    Sabbah, H. N., V. G. Sharov, P. A. Chaudhry, G. Suzuki, A. Todor, and H. Morita. Chronic therapy with the acorn cardiac support device in dogs with chronic heart failure: three and six months hemodynamic, histologic and ultrastructural findings. J. Heart Lung Transpl. 20:189, 2001.CrossRefGoogle Scholar
  29. 29.
    Sasaki, D., T. Noritsugu, and M. Takaiwa. Development of active support splint driven by pneumatic soft actuator (ASSIST). 2005.Google Scholar
  30. 30.
    Shahinpoor, M., and K. J. Kim. Design, development and testing of a multi-fingered heart compression/assist device equipped with IPMC artificial muscles. Int. Soc. Opt. Photon. 4329:411–420, 2001.Google Scholar
  31. 31.
    Smith, E. M. Cardiac massage apparatus. 1962.Google Scholar
  32. 32.
    Trumble, D. R., C. S. Park, and J. A. Magovern. Copulsation balloon for right ventricular assistance: preliminary trials. Circulation 99:2815–2818, 1999.CrossRefPubMedGoogle Scholar
  33. 33.
    Wenk, J. F., L. Ge, Z. Zhang, D. Mojsejenko, D. D. Potter, E. E. Tseng, J. M. Guccione, and M. B. Ratcliffe. Biventricular finite element modeling of the acorn CorCap cardiac support device on a failing heart. Ann. Thorac. Surg. 95:2022–2027, 2018.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Markus A. Horvath
    • 1
    • 2
    • 4
    • 5
  • Claudia E. Varela
    • 1
    • 2
  • Eimear B. Dolan
    • 1
    • 2
    • 3
  • William Whyte
    • 3
    • 4
    • 5
    • 6
  • David S. Monahan
    • 3
  • Christopher J. Payne
    • 4
    • 5
  • Isaac A. Wamala
    • 7
  • Nikolay V. Vasilyev
    • 8
  • Frank A. Pigula
    • 9
  • David J. Mooney
    • 4
    • 5
  • Conor J. Walsh
    • 4
    • 5
  • Garry P. Duffy
    • 3
    • 6
  • Ellen T. Roche
    • 1
    • 2
    • 4
    • 5
    • 10
  1. 1.Harvard-MIT Program in Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Anatomy, School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
  4. 4.Wyss Institute for Biologically Inspired EngineeringBostonUSA
  5. 5.John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  6. 6.Advanced Materials and BioEngineering Research (AMBER) CentreRCSI, NUIG & TCDDublinIreland
  7. 7.Department of Cardiovascular and Thoracic SurgeryThe German Heart Center BerlinBerlinGermany
  8. 8.Department of Cardiac SurgeryBoston Children’s HospitalBostonUSA
  9. 9.Florida Hospital Medical GroupOrlandoUSA
  10. 10.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations