Advertisement

Annals of Biomedical Engineering

, Volume 46, Issue 7, pp 1001–1012 | Cite as

Inter-subject FDG PET Brain Networks Exhibit Multi-scale Community Structure with Different Normalization Techniques

  • Megan M. Sperry
  • Sonia Kartha
  • Eric J. Granquist
  • Beth A. Winkelstein
Article

Abstract

Inter-subject networks are used to model correlations between brain regions and are particularly useful for metabolic imaging techniques, like 18F-2-deoxy-2-(18F)fluoro-d-glucose (FDG) positron emission tomography (PET). Since FDG PET typically produces a single image, correlations cannot be calculated over time. Little focus has been placed on the basic properties of inter-subject networks and if they are affected by group size and image normalization. FDG PET images were acquired from rats (n = 18), normalized by whole brain, visual cortex, or cerebellar FDG uptake, and used to construct correlation matrices. Group size effects on network stability were investigated by systematically adding rats and evaluating local network connectivity (node strength and clustering coefficient). Modularity and community structure were also evaluated in the differently normalized networks to assess meso-scale network relationships. Local network properties are stable regardless of normalization region for groups of at least 10. Whole brain-normalized networks are more modular than visual cortex- or cerebellum-normalized network (p < 0.00001); however, community structure is similar at network resolutions where modularity differs most between brain and randomized networks. Hierarchical analysis reveals consistent modules at different scales and clustering of spatially-proximate brain regions. Findings suggest inter-subject FDG PET networks are stable for reasonable group sizes and exhibit multi-scale modularity.

Keywords

Networks Brain FDG PET Modularity 

Notes

Acknowledgments

The authors thank Eric Blankemeyer for his assistance with PET imaging, Dr. Danielle Bassett for helpful conversations regarding modularity, and Dr. Blythe Phillips for consultation when developing the dexmedetomidine sedation protocol. This project was supported by funding from the Catherine D. Sharpe Foundation, the Oral and Maxillofacial Surgery Foundation, the Oral and Maxillofacial Surgery Schoenleber Research Fund from the University of Pennsylvania School of Dental Medicine, and a training grant from NIH/NIAMS (T32-AR007132).

Conflict of interest

The authors have no conflicts of interest to disclose.

Supplementary material

10439_2018_2022_MOESM1_ESM.docx (312 kb)
Supplementary material 1 (DOCX 312 kb)

References

  1. 1.
    Avants, B. B., N. J. Tustison, G. Song, P. A. Cook, A. Klein, and J. C. Gee. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044, 2011.CrossRefPubMedGoogle Scholar
  2. 2.
    Baliki, M. N., P. C. Chang, A. T. Baria, M. V. Centeno, and A. V. Apkarian. Resting-state functional reorganization of the rat limbic system following neuropathic injury. Sci. Rep. 4:6186, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bettinardi, R. G., N. Tort-Colet, M. Ruiz-Mejias, M. V. Sanchez-Vives, and G. Deco. Gradual emergence of spontaneous correlated brain activity during fading of general anesthesia in rats: evidences from fMRI and local field potentials. Neuroimage 114:185–198, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Betzel, R. F., and D. S. Bassett. Multi-scale brain networks. Neuroimage 7:446–451, 2016.Google Scholar
  5. 5.
    Betzel, R. F., M. Fukushima, Y. He, X. N. Zuo, and O. Sporns. Dynamic fluctuations coincide with periods of high and low modularity in resting-state functional brain networks. Neuroimage 127:287–297, 2016.CrossRefPubMedGoogle Scholar
  6. 6.
    Blondel, V. D., J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008.  https://doi.org/10.1088/1742-5468/2008/10/p10008.Google Scholar
  7. 7.
    Bota, M., O. Sporns, and L. W. Swanson. Architecture of the cerebral cortical association connectome underlying cognition. Proc. Natl. Acad. Sci. USA 112:E2093–E2101, 2015.  https://doi.org/10.1073/pnas.1504394112.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Braun, U., A. Schäfer, H. Walter, S. Erk, N. Romanczuk-Seiferth, L. Haddad, J. I. Schweiger, O. Grimm, A. Heinz, H. Tost, A. Meyer-Lindenberg, and D. S. Bassett. Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. USA 112:11678–11683, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bullmore, E. T., and O. Sporns. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186–198, 2009.CrossRefPubMedGoogle Scholar
  10. 10.
    Bullmore, E., and O. Sporns. The economy of brain network organization. Nat. Rev. Neurosci. 13:336–349, 2012.CrossRefPubMedGoogle Scholar
  11. 11.
    Chen, Z. J., Y. He, P. Rosa-Neto, J. Germann, and A. C. Evans. Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb. Cortex 18:2374–2381, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    D’Souza, D. V., E. Jonckers, A. Bruns, B. Kunnecke, M. Von Kienlin, A. Van Der Linden, T. Mueggler, and M. Verhoye. Preserved modular network organization in the sedated rat brain. PLoS ONE 9:e106156, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dawson, N., M. McDonald, D. J. Higham, B. J. Morris, and J. A. Pratt. Subanesthetic ketamine treatment promotes abnormal interactions between neural subsystems and alters the properties of functional brain networks. Neuropsychopharmacology 39:1786–1798, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    De Haan, W., W. M. Van der Flier, T. Koene, L. L. Smits, P. Scheltens, and C. J. Stam. Disrupted modular brain dynamics reflect cognitive dysfunction in Alzheimer’s disease. Neuroimage 59:3085–3093, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Di, X., B. B. Biswal, and A. D. N. Initiative. Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks. Brain Connect. 2:275–283, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Dimitriadis, S. I., C. Salis, I. Tarnanas, and D. E. Linden. Topological filtering of dynamic functional brain networks unfolds informative chronnectomics: a novel data-driven thresholding scheme based on orthogonal minimal spanning trees (OMSTs). Front. Neuroinform. 11:28, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Garcia, D. V., C. Casteels, A. J. Schwarz, R. A. J. O. Dierckx, M. Koole, and J. Doorduin. A standardized method for the construction of tracer specific PET and SPECT rat brain templates: validation and implementation of a toolbox. PLoS ONE 10:e0143900, 2015.  https://doi.org/10.1371/journal.pone.0122363.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gonçalves, S. I., J. C. De Munck, P. J. W. Pouwels, R. Schoonhoven, J. P. A. Kuijer, N. M. Maurits, J. M. Hoogduin, E. J. W. Van Someren, R. M. Heethaar, and F. H. Lopes Da Silva. Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage 30:203–213, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    Hagmann, P., L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, J. Van Wedeen, and O. Sporns. Mapping the structural core of human cerebral cortex. PLoS Biol. 6:1479–1493, 2008.CrossRefGoogle Scholar
  20. 20.
    He, Y., Z. J. Chen, and A. C. Evans. Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17:2407–2419, 2007.CrossRefPubMedGoogle Scholar
  21. 21.
    Jeong, Y., S. S. Cho, J. M. Park, S. J. Kang, and J. S. Lee. PET findings in frontotemporal dementia: an SPM analysis of 29 patients. J. Nucl. Med. 46:233–239, 2005.PubMedGoogle Scholar
  22. 22.
    Khambhati, A. N., K. A. Davis, B. S. Oommen, S. H. Chen, T. H. Lucas, B. Litt, and D. S. Bassett. Dynamic network drivers of seizure generation, propagation and termination in human neocortical epilepsy. PLoS Comput. Biol. 11:1–19, 2015.CrossRefGoogle Scholar
  23. 23.
    Kim, C.-E., Y. K. Kim, G. Chung, J. M. Jeong, D. S. Lee, J. Kim, and S. J. Kim. Large-scale plastic changes of the brain network in an animal model of neuropathic pain. Neuroimage 98:203–215, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Kornblum, H. I., D. M. Araujo, A. J. Annala, K. J. Tatsukawa, M. E. Phelps, and S. R. Cherry. In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat. Biotechnol. 18:655–660, 2000.CrossRefPubMedGoogle Scholar
  25. 25.
    Lohse, C., D. S. Bassett, K. O. Lim, and J. M. Carlson. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations. PLoS Comput. Biol. 10:e1003712, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lundgaard, I., B. Li, L. Xie, H. Kang, S. Sanggaard, J. D. R. Haswell, W. Sun, S. Goldman, S. Blekot, M. Nielsen, T. Takano, R. Deane, and M. Nedergaard. Direct neuronal glucose uptake heralds activity-dependent increases in cerebral metabolism. Nat. Commun. 6:6807, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mechelli, A., W. D. Penny, C. J. Price, D. R. Gitelman, and K. J. Friston. Effective connectivity and intersubject variability: using a multisubject network to test differences and commonalities. Neuroimage 17:1459–1469, 2002.CrossRefPubMedGoogle Scholar
  28. 28.
    Meilǎ, M. Comparing clusterings-an information based distance. J. Multivar. Anal. 98:873–895, 2007.CrossRefGoogle Scholar
  29. 29.
    Meunier, D., R. Lambiotte, and E. T. Bullmore. Modular and hierarchically modular organization of brain networks. Front. Neurosci. 4:1–11, 2010.CrossRefGoogle Scholar
  30. 30.
    Morbelli, S., A. Drzezga, R. Perneczky, G. B. Frisoni, A. Caroli, B. N. M. van Berckel, R. Ossenkoppele, E. Guedj, M. Didic, A. Brugnolo, G. Sambuceti, M. Pagani, E. Salmon, and F. Nobili. Resting metabolic connectivity in prodromal Alzheimer’s disease. A European Alzheimer Disease Consortium (EADC) project. Neurobiol. Aging 33:2533–2550, 2012.CrossRefPubMedGoogle Scholar
  31. 31.
    Newman, M. E. J. Analysis of weighted networks. Phys. Rev. E 70:1–9, 2004.Google Scholar
  32. 32.
    Reichardt, J., and S. Bornholdt. Statistical mechanics of community detection. Phys. Rev. E 74:1–14, 2006.Google Scholar
  33. 33.
    Riedl, V., K. Bienkowska, C. Strobel, M. Tahmasian, T. Grimmer, S. Forster, K. J. Friston, C. Sorg, and A. Drzezga. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study. J. Neurosci. 34:6260–6266, 2014.CrossRefPubMedGoogle Scholar
  34. 34.
    Rubinov, M., and O. Sporns. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069, 2010.CrossRefPubMedGoogle Scholar
  35. 35.
    Rubinov, M., and O. Sporns. Weight-conserving characterization of complex functional brain networks. Neuroimage 56:2068–2079, 2011.CrossRefPubMedGoogle Scholar
  36. 36.
    Schwarz, A. J., A. Danckaert, T. Reese, A. Gozzi, G. Paxinos, C. Watson, E. V. Merlo-Pich, and A. Bifone. A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. Neuroimage 32:538–550, 2006.CrossRefPubMedGoogle Scholar
  37. 37.
    Schwarz, A. J., A. Gozzi, and A. Bifone. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI. Neuroimage 47:302–311, 2009.CrossRefPubMedGoogle Scholar
  38. 38.
    Sporns, O., D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Organization, development and function of complex brain networks. Trends Cogn. Sci. 8:418–425, 2004.CrossRefPubMedGoogle Scholar
  39. 39.
    Stoessl, A. J. Glucose utilization: still in the synapse. Nat. Neurosci. 20:382–384, 2017.CrossRefPubMedGoogle Scholar
  40. 40.
    Tewarie, P., E. van Dellen, A. Hillebrand, and C. J. Stam. The minimum spanning tree: an unbiased method for brain network analysis. Neuroimage 104:177–188, 2015.CrossRefPubMedGoogle Scholar
  41. 41.
    van den Heuvel, M. P., H. E. Hulshoff, and H. E. H. Pol. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20:519–534, 2010.CrossRefPubMedGoogle Scholar
  42. 42.
    Vanicek, T., A. Hahn, T. Traub-Weidinger, E. Hilger, M. Spies, W. Wadsak, R. Lanzenberger, E. Pataraia, and S. Asenbaum-Nan. Insights into intrinsic brain networks based on graph theory and PET in right- compared to left-sided temporal lobe epilepsy. Sci. Rep. 6:28513, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yushkevich, P. A., J. Piven, H. C. Hazlett, R. G. Smith, S. Ho, J. C. Gee, and G. Gerig. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128, 2006.CrossRefPubMedGoogle Scholar
  44. 44.
    Zimmer, E. R., M. J. Parent, D. G. Souza, A. Leuzy, C. Lecrux, H.-I. Kim, S. Gauthier, L. Pellerin, E. Hamel, and P. Rosa-Neto. [18F]FDG PET signal is driven by astroglial glutamate transport. Nat. Neurosci. 20:393–395, 2017.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Megan M. Sperry
    • 1
  • Sonia Kartha
    • 1
  • Eric J. Granquist
    • 2
  • Beth A. Winkelstein
    • 1
    • 3
    • 4
  1. 1.Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Oral & Maxillofacial SurgeryUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  3. 3.Department of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.PhiladelphiaUSA

Personalised recommendations