Annals of Biomedical Engineering

, Volume 46, Issue 7, pp 960–971 | Cite as

A Novel High-Resolution Method for the Respiration Rate and Breathing Waveforms Remote Monitoring

  • Boris G. Vainer


A search for robust noninvasive methods permitting to discern the respiration subtle peculiarities in mammals is a topical issue. A novel approach called “sorption-enhanced infrared thermography” (SEIRT), helping to solve this problem, is described. Its benefits spring from the integration of the infrared thermography (IRT) and chemical physics (phase transition heat release/absorption) within a single method. The SEIRT opportunities were verified in the investigation of 42 humans, 49 rats and 4 minipigs whose breathing waveforms were revealed to the last detail. It is shown that the SEIRT-obtained breathing-conditioned temperature response may exceed 10 °C (!) even in small animals (rats) and that the SEIRT sensitivity is 4.5–250 times higher than that of the matched IRT-based techniques. The new method is validated by a comparison with that based on thorax breathing movement (TBM). It is shown that the SEIRT-determined breaths have a close correlation with those determined via TBM (r = + 1.000, p ≪ 0.05); this is also true for breathing intervals (r = + 0.9772, p ≪ 0.05). SEIRT opens up the way to a high-resolution noncontact quantitative evaluation of respiration rate and breathing waveforms in both humans and animals. It may become a cutting-edge technique in diagnostic medicine and biomedical research.


Infrared thermography Adsorption/desorption heat Breathing sorption indicator Mammals Humans Animals 



Breathing sorption indicator




Infrared thermography


Sorption-enhanced infrared thermography


Thorax breathing movement



This work was supported by the Russian Foundation for Basic Research (Grant No. 18-08-00956). The author thanks V.I. Baranov for his technical assistance in the experiments with laboratory rats, E.G. Vergunov for his help in the statistical analysis, and D.S. Sergeevichev for his help in organizing the minipigs investigation.


  1. 1.
    Abbas, A. K., K. Heimann, K. Jergus, T. Orlikowsky, and S. Leonhardt. Neonatal non-contact respiratory monitoring based on real-time infrared thermography. Biomed. Eng. Online 10:93, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aliverti, A., R. Dellaca, and A. Pedotti. Optoelectronic plethysmography: a new tool in respiratory medicine. Recenti Prog. Med. 92:644–647, 2001.PubMedGoogle Scholar
  3. 3.
    Barry, P. W., N. P. Mason, and J.-P. Richalet. Nasal peak inspiratory flow at altitude. Eur. Respir. J. 19:16–19, 2002.CrossRefPubMedGoogle Scholar
  4. 4.
    Besio, W., V. Sharma, and J. Spaulding. The effects of concentric ring electrode electrical stimulation on rat skin. Ann. Biomed. Eng. 38:1111–1118, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    DuBois, A. B., S. Y. Botelho, and J. H. Comroe. A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J. Clin. Invest. 35:327–335, 1956.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fei, J., and I. Pavlidis. Thermistor at a distance: Unobtrusive measurement of breathing. IEEE Trans. Biomed. Eng. 57:988–998, 2010.CrossRefPubMedGoogle Scholar
  7. 7.
    Fernandez-Cuevas, I., J. C. Bouzas Marins, J. Arnaiz Lastras, P. M. Gomez Carmona, S. Pinonosa Cano, M. Angel Garcia-Concepcion, and M. Sillero-Quintana. Classification of factors influencing the use of infrared thermography in humans: a review. Infrared Phys. Technol. 71:28–55, 2015.CrossRefGoogle Scholar
  8. 8.
    Formenti, D., N. Ludwig, M. Gargano, M. Gondola, N. Dellerma, A. Caumo, and G. Alberti. Thermal imaging of exercise-associated skin temperature changes in trained and untrained female subjects. Ann. Biomed. Eng. 41:863–871, 2013.CrossRefPubMedGoogle Scholar
  9. 9.
    Greneker, E. F. Radar sensing of heartbeat and respiration at a distance with applications of the technology. RADAR 97:150–154, 1997.Google Scholar
  10. 10.
    Heyde, C., H. Leutheuser, B. Eskofier, K. Roecker, and A. Gollhofer. Respiratory inductance plethysmography—a rationale for validity during exercise. Med. Sci. Sports Exerc. 46:488–495, 2014.CrossRefPubMedGoogle Scholar
  11. 11.
    Kastl, K. G., K. M. Wiesmiller, and J. Lindemann. Dynamic infrared thermography of the nasal vestibules: a new method. Rhinology 47:89–92, 2009.PubMedGoogle Scholar
  12. 12.
    Lahiri, B. B., S. Bagavathiappan, T. Jayakumar, and J. Philip. Medical applications of infrared thermography: a review. Infrared Phys. Technol. 55:221–235, 2012.CrossRefGoogle Scholar
  13. 13.
    Lewis, G. F., R. G. Gatto, and S. W. Porges. A novel method for extracting respiration rate and relative tidal volume from infrared thermography. Psychophysiology 48:877–887, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Malmberg, L. P., V.-P. Seppä, A. Kotaniemi-Syrjänen, K. Malmström, M. Kajosaari, A. S. Pelkonen, J. Viik, and M. J. Mäkelä. Measurement of tidal breathing flows in infants using impedance pneumography. Eur. Respir. J. 2017. Scholar
  15. 15.
    Markel, A. L., and B. G. Vainer. Infrared thermography in diagnosis of breast cancer (review of foreign literature). Ter. Arkh. 77:57–61, 2005.PubMedGoogle Scholar
  16. 16.
    Mel’gunov, M. S., A. B. Ayupov, V. B. Fenelonov, and B. G. Vainer. Direct contact-free real-time acquisition of temperature profiles in adsorbent bed during vacuum swing adsorption. Adsorption 19:835–840, 2013.CrossRefGoogle Scholar
  17. 17.
    Moreira, D. G., J. T. Costello, C. J. Brito, J. G. Adamczyk, K. Ammer, A. J. E. Bach, C. M. A. Costa, C. Eglin, A. A. Fernandes, I. Fernández-Cuevas, J. J. A. Ferreira, D. Formenti, D. Fournet, G. Havenith, K. Howell, A. Jung, G. P. Kenny, E. S. Kolosovas-Machuca, M. J. Maley, A. Merla, D. D. Pascoe, J. I. Priego, R. G. Quesada, A. R. D. Schwartz, J. Seixas, B. G. Vainer, and M. Sillero-Quintana. Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature. J. Therm. Biol. 69:155–162, 2017.CrossRefPubMedGoogle Scholar
  18. 18.
    Murthy, R., and I. Pavlidis. Noncontact measurement of breathing function. IEEE Eng. Med. Biol. Mag. 25(3):57–67, 2006.CrossRefPubMedGoogle Scholar
  19. 19.
    Pereira, C. B., X. Yu, M. Czaplik, R. Rossaint, V. Blazek, and S. Leonhardt. Remote monitoring of breathing dynamics using infrared thermography. Biomed. Opt. Express 6:4378–4394, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Petrović, M. D., J. Petrovic, A. Daničić, M. Vukčević, B. Bojović, L. Hadžievski, T. Allsop, G. Lloyd, and D. J. Webb. Non-invasive respiratory monitoring using long-period fiber grating sensors. Biomed. Opt. Express 5:1136–1144, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Storck, K., M. Karlsson, P. Ask, and D. Loyd. Heat transfer evaluation of the nasal thermistor technique. IEEE Trans. Biomed. Eng. 43:1187–1191, 1996.CrossRefPubMedGoogle Scholar
  22. 22.
    Vainer, B. G. Treated skin temperature regularities revealed by IR thermography. Proc. SPIE 4360:470–481, 2001.CrossRefGoogle Scholar
  23. 23.
    Vainer, B. G. FPA-based infrared thermography as applied to the study of cutaneous perspiration and stimulated vascular response in humans. Phys. Med. Biol. 50:R63–R94, 2005.CrossRefPubMedGoogle Scholar
  24. 24.
    Vainer, B. G. Focal plane array based infrared thermography in fine physical experiment. J. Phys. D Appl. Phys. 41:065102, 2008.CrossRefGoogle Scholar
  25. 25.
    Vainer, B. G. Quantitative characterization of vapour adsorption on solid surfaces and estimation of emissivity of solids using narrow-band short-wave infrared thermography. QIRT J. 5:175–193, 2008.CrossRefGoogle Scholar
  26. 26.
    Vainer, B. G. The use of infrared thermography for the investigation of thermoregulation in humans. In: Body Temperature Regulation, edited by A. B. Cisneros, and B. L. Goins. New York: Nova Science Publishers Inc., 2009, pp. 123–153.Google Scholar
  27. 27.
    Vainer, B. G. Investigation of circulation in humans with the use of infrared thermography. In: Circulatory System and Arterial Hypertension: Experimental Investigation, Mathematical and Computer Simulation, edited by L. N. Ivanova, A. L. Markel, A. M. Blokhin, and E. V. Mishchenko. New York: Nova Science Publishers Inc., 2012, pp. 207–234.Google Scholar
  28. 28.
    Vainer, B. G. Applications of infrared thermography to medicine. In: Infrared Thermography Recent Advances and Future Trends, edited by C. Meola. Sharjah: Bentham Science Publishers Ltd., pp. 61–84, 2012 (eISBN: 978-1-60805-143-4).Google Scholar
  29. 29.
    Vainer, B. G. Interventional infrared thermal diagnostics in medicine and physiology. In: Proceedings of QIRT 2012 Conference, 11–14 June 2012, Naples, Italy, 2012. Paper QIRT-2012-340. Available at QIRT Open Archives:
  30. 30.
    Vainer, B. G. New methods aimed at investigation of animals and humans external respiration. In: Science and Education in the XXI century, Intern. Scientific-Practical Conf., Tambov, Russia, October 31, 2014. Proceedings. Part 12. Tambov: Consulting company Ucom Ltd, pp. 35–38, 2014.Google Scholar
  31. 31.
    Vainer, B. G. Application of the infrared thermography-based adsorption-induced indication method to investigating the human respiration. In: Development Prospects of Science and Education, Intern. Scientific-Practical Conf., Tambov, Russia, February 28, 2015. Proceedings. Part 8. Tambov: Consulting Company Ucom Ltd, pp. 32–34, 2015.Google Scholar
  32. 32.
    Vainer, B. G. Lasers and infrared thermography: advantageous cooperation. Appl. Optics 55:D95–D100, 2016.CrossRefGoogle Scholar
  33. 33.
    Vainer, B. G. Infrared thermography-based recent methods for biomedical imaging, diagnostics and quantitative research. In: Prospects of Fundamental Sciences Development: XIII International Conference of Students, Graduate Students and Young Scientists. Russia, Tomsk, April 26–29, 2016. Vol. 4. Biomedicine, edited by I. A. Kurzina and G. A. Voronova. Tomsk: Tomsk Politechnical University Publishing House, pp. 21–23, 2016.Google Scholar
  34. 34.
    Vainer, B. G. and V. I. Baranov. Precise quantitative investigation of breathing dynamics in laboratory animals. In: Science and Education: Topical Problems and Future Trends, Intern. Scientific-Practical Conf., Tambov, Russia, August 30, 2014. Proceedings. Part 3. Tambov: Consulting Company Ucom Ltd, pp. 36–39, 2014.Google Scholar
  35. 35.
    Vainer, B. G., and A. L. Markel. Systemic vascular response to brachial arteries crossclamping may prognosticate the outcome of remote ischemic preconditioning. Med. Hypoth. 84:298–300, 2015.CrossRefGoogle Scholar
  36. 36.
    Vainer, B. G., and V. V. Morozov. Infrared thermography-based biophotonics: integrated diagnostic technique for systemic reaction monitoring. Phys. Procedia 86:81–85, 2017.CrossRefGoogle Scholar
  37. 37.
    Vainer, B. G., V. I. Baranov, and E. G. Vergunov. Infrared thermography as applied to the studies of cardiovascular system in rats. In: Proceedings of QIRT 2014 Conference, 7–11 July 2014, Bordeaux, France, 2014, Paper QIRT-2014-157. Available at QIRT Open Archives:
  38. 38.
    Vainer, B. G., E. G. Vergunov, V. I. Baranov, A. L. Markel, A. A. Seryapina, and I. V. Karmakulova. Integrated measurement-based functional state examination of an animal organism subjected to external loads: respiration- and heart-rate-dynamics conformity evaluation. Sci. Alm. 10–3:443–449, 2015.Google Scholar
  39. 39.
    Vainer, B. G., E. G. Vergunov, and D. S. Sergeevichev. Agreement between heart and breathing rates in laboratory animals exposed to breathing gases of different CO2/O2 composition. Psychophysiol. News 4:24–33, 2016.Google Scholar
  40. 40.
    Wiesmiller, K., T. Keck, R. Leiacker, and J. Lindemann. Simultaneous in vivo measurements of intranasal air and mucosal temperature. Eur. Arch. Otorhinolaryngol. 264:615–619, 2007.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang, B., F. B. McDonald, K. J. Cummings, P. B. Frappell, and J. R. A. Wilson. Novel method for conscious airway resistance and ventilation estimation in neonatal rodents using plethysmography and a mechanical lung. Respir. Physiol. Neurobiol. 201:75–83, 2014.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Rzhanov Institute of Semiconductor Physics SB RASNovosibirskRussia

Personalised recommendations