Skip to main content
Log in

Quantitative Dual Contrast CT Technique for Evaluation of Articular Cartilage Properties

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Impact injuries of cartilage may initiate post-traumatic degeneration, making early detection of injury imperative for timely surgical or pharmaceutical interventions. Cationic (positively-charged) CT contrast agents detect loss of cartilage proteoglycans (PGs) more sensitively than anionic (negatively-charged) or non-ionic (non-charged, i.e., electrically neutral) agents. However, degeneration related loss of PGs and increase in water content have opposite effects on the diffusion of the cationic agent, lowering its sensitivity. In contrast to cationic agents, diffusion of non-ionic agents is governed only by steric hindrance and water content of cartilage. We hypothesize that sensitivity of an iodine(I)-based cationic agent may be enhanced by simultaneous use of a non-ionic gadolinium(Gd)-based agent. We introduce a quantitative dual energy CT technique (QDECT) for simultaneous quantification of two contrast agents in cartilage. We employ this technique to improve the sensitivity of cationic CA4+ (q =+4) by normalizing its partition in cartilage with that of non-ionic gadoteridol. The technique was evaluated with measurements of contrast agent mixtures of known composition and human osteochondral samples (n = 57) after immersion (72 h) in mixture of CA4+ and gadoteridol. Samples were arthroscopically graded and biomechanically tested prior to QDECT (50/100 kV). QDECT determined contrast agent mixture compositions correlated with the true compositions (R2= 0.99, average error = 2.27%). Normalizing CA4+ partition in cartilage with that of gadoteridol improved correlation with equilibrium modulus (from ρ = 0.701 to 0.795). To conclude, QDECT enables simultaneous quantification of I and Gd contrast agents improving diagnosis of cartilage integrity and biomechanical status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Adair, G. S. On the Donnan equilibrium and the equations of Gibbs. Science 58:13, 1923.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson, D. D., S. Chubinskaya, F. Guilak, J. A. Martin, T. R. Oegema, S. A. Olson, and J. A. Buckwalter. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29:802–809, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Arkill, K. P., and C. P. Winlove. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthr. Cartil. 16:708–714, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Bansal, P. N., N. S. Joshi, V. Entezari, B. C. Malone, R. C. Stewart, B. D. Snyder, and M. W. Grinstaff. Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage. J. Orthop. Res. 29:704–709, 2011.

    Article  PubMed  CAS  Google Scholar 

  5. Bansal, P. N., R. C. Stewart, V. Entezari, B. D. Snyder, and M. W. Grinstaff. Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative CT imaging in cartilage. Osteoarthr. Cartil. 19:970–976, 2011.

    Article  PubMed  CAS  Google Scholar 

  6. Bay-Jensen, A.-C., S. Hoegh-Madsen, E. Dam, K. Henriksen, B. C. Sondergaard, P. Pastoureau, P. Qvist, and M. A. Karsdal. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol. Int. 30:435–442, 2010.

    Article  PubMed  Google Scholar 

  7. Berberat, J. E., M. J. Nissi, J. S. Jurvelin, and M. T. Nieminen. Assessment of interstitial water content of articular cartilage with T1 relaxation. Magn. Reson. Imaging 27:727–732, 2009.

    Article  PubMed  Google Scholar 

  8. Brittberg, M., and C. S. Winalski. Evaluation of cartilage injuries and repair. J. Bone Jt Surg. Am. 85-A(Suppl):58–69, 2003.

    Article  Google Scholar 

  9. Brocklehurst, R., M. T. Bayliss, A. Maroudas, H. L. Coysh, M. A. Freeman, P. A. Revell, and S. Y. Ali. The composition of normal and osteoarthritic articular cartilage from human knee joints. With special reference to unicompartmental replacement and osteotomy of the knee. J. Bone Jt Surg. Am. 66:95–106, 1984.

    Article  CAS  Google Scholar 

  10. Buckwalter, J. A., H. J. Mankin, and A. J. Grodzinsky. Articular cartilage and osteoarthritis. Instr. Course Lect. 54:465–480, 2005.

    PubMed  Google Scholar 

  11. Correa, D., and S. A. Lietman. Articular cartilage repair: current needs, methods and research directions. Semin. Cell Dev. Biol. 62:67–77, 2017.

    Article  PubMed  Google Scholar 

  12. Ewers, B. J., V. M. Jayaraman, R. F. Banglmaier, and R. C. Haut. Rate of blunt impact loading affects changes in retropatellar cartilage and underlying bone in the rabbit patella. J. Biomech. 35:747–755, 2002.

    Article  PubMed  CAS  Google Scholar 

  13. Hayes, W. C., L. M. Keer, G. Herrmann, and L. F. Mockros. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5:541–551, 1972.

    Article  PubMed  CAS  Google Scholar 

  14. Honkanen, J. T. J., M. J. Turunen, J. D. Freedman, S. Saarakkala, M. W. Grinstaff, J. H. Ylärinne, J. S. Jurvelin, and J. Töyräs. Cationic contrast agent diffusion differs between cartilage and meniscus. Ann. Biomed. Eng. 44:2913–2921, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Honkanen, J. T. J., M. J. Turunen, V. Tiitu, J. S. Jurvelin, and J. Töyräs. Transport of iodine is different in cartilage and meniscus. Ann. Biomed. Eng. 44:2114–2122, 2016.

    Article  PubMed  CAS  Google Scholar 

  16. Julkunen, P., R. K. Korhonen, W. Herzog, and J. S. Jurvelin. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study. Med. Eng. Phys. 30:506–515, 2008.

    Article  PubMed  Google Scholar 

  17. Kokkonen, H. T., J. S. Jurvelin, V. Tiitu, and J. Töyräs. Detection of mechanical injury of articular cartilage using contrast enhanced computed tomography. Osteoarthr. Cartil. 19:295–301, 2011.

    Article  PubMed  CAS  Google Scholar 

  18. Kokkonen, H. T., J.-S. Suomalainen, A. Joukainen, H. Kröger, J. Sirola, J. S. Jurvelin, J. Salo, and J. Töyräs. In vivo diagnostics of human knee cartilage lesions using delayed CBCT arthrography. J. Orthop. Res. 32:403–412, 2014.

    Article  PubMed  Google Scholar 

  19. Kokkonen, H. T., H. C. Chin, J. Töyräs, J. S. Jurvelin, and T. M. Quinn. Solute transport of negatively charged contrast agents across articular surface of injured cartilage. Ann. Biomed. Eng. 45:973–981, 2016.

    Article  PubMed  Google Scholar 

  20. Korhonen, R. K., M. S. Laasanen, J. Töyräs, R. Lappalainen, H. J. Helminen, and J. S. Jurvelin. Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J. Biomech. 36:1373–1379, 2003.

    Article  PubMed  Google Scholar 

  21. Kulmala, K. A. M., H. M. Karjalainen, H. T. Kokkonen, V. Tiitu, V. Kovanen, M. J. Lammi, J. S. Jurvelin, R. K. Korhonen, and J. Töyräs. Diffusion of ionic and non-ionic contrast agents in articular cartilage with increased cross-linking—contribution of steric and electrostatic effects. Med. Eng. Phys. 35:1415–1420, 2013.

    Article  PubMed  CAS  Google Scholar 

  22. Lakin, B. A., H. Patel, C. Holland, J. D. Freedman, J. S. Shelofsky, B. D. Snyder, K. S. Stok, and M. W. Grinstaff. Contrast-enhanced CT using a cationic contrast agent enables non-destructive assessment of the biochemical and biomechanical properties of mouse tibial plateau cartilage. J. Orthop. Res. 34:1130–1138, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lakin, B. A., B. D. Snyder, and M. W. Grinstaff. Assessing cartilage biomechanical properties: techniques for evaluating the functional performance of cartilage in health and disease. Annu. Rev. Biomed. Eng. 19:27–55, 2017.

    Article  PubMed  CAS  Google Scholar 

  24. Li, X., V. Pedoia, D. Kumar, J. Rivoire, C. Wyatt, D. Lansdown, K. Amano, N. Okazaki, D. Savic, M. F. Koff, J. Felmlee, S. L. Williams, and S. Majumdar. Cartilage T1rho and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites. Osteoarthr. Cartil. 23:2214–2223, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Link, T. M., J. Neumann, and X. Li. Prestructural cartilage assessment using MRI. J. Magn. Reson. Imaging 45:949–965, 2017.

    Article  PubMed  Google Scholar 

  26. Maroudas, A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 12:233–248, 1975.

    Article  PubMed  CAS  Google Scholar 

  27. Maroudas, A., P. Bullough, S. A. Swanson, and M. A. Freeman. The permeability of articular cartilage. J. Bone Jt Surg. Br. 50:166–177, 1968.

    Article  CAS  Google Scholar 

  28. Muir, H., P. Bullough, and A. Maroudas. The distribution of collagen in human articular cartilage with some of its physiological implications. J. Bone Jt Surg. Br. 52:554–563, 1970.

    Article  CAS  Google Scholar 

  29. Myller, K. A. H., M. J. Turunen, J. T. J. Honkanen, S. P. Vaananen, J. T. Iivarinen, J. Salo, J. S. Jurvelin, and J. Töyräs. In vivo contrast-enhanced cone beam CT provides quantitative information on articular cartilage and subchondral bone. Ann. Biomed. Eng. 45:811–818, 2017.

    Article  PubMed  Google Scholar 

  30. Pouran, B., V. Arbabi, A. A. Zadpoor, and H. Weinans. Isolated effects of external bath osmolality, solute concentration, and electrical charge on solute transport across articular cartilage. Med. Eng. Phys. 38:1399–1407, 2016.

    Article  PubMed  Google Scholar 

  31. Rangacharyulu, C. Physics of Nuclear Radiations Concepts, Techniques and Applications. Boca Raton: Taylor and Francis, 2013.

    Book  Google Scholar 

  32. Saltybaeva, N., M. E. Jafari, M. Hupfer, and W. A. Kalender. Estimates of effective dose for CT scans of the lower extremities. Radiology 273:153–159, 2014.

    Article  PubMed  Google Scholar 

  33. Saukko, A. E. A., J. T. J. Honkanen, W. Xu, S. P. Vaananen, J. S. Jurvelin, V.-P. Lehto, and J. Töyräs. Dual contrast CT method enables diagnostics of cartilage injuries and degeneration using a single CT image. Ann. Biomed. Eng. 2017. https://doi.org/10.1007/s10439-017-1916-3.

    Article  PubMed  Google Scholar 

  34. Stewart, R. C., P. N. Bansal, V. Entezari, H. Lusic, R. M. Nazarian, B. D. Snyder, and M. W. Grinstaff. Contrast-enhanced CT with a high-affinity cationic contrast agent for imaging ex vivo bovine, intact ex vivo rabbit, and in vivo rabbit cartilage. Radiology 266:141–150, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Stewart, R. C., J. T. J. Honkanen, H. T. Kokkonen, V. Tiitu, S. Saarakkala, A. Joukainen, B. D. Snyder, J. S. Jurvelin, M. W. Grinstaff, and J. Töyräs. Contrast-enhanced computed tomography enables quantitative evaluation of tissue properties at intrajoint regions in cadaveric knee cartilage. Cartilage 8:391–399, 2017.

    Article  PubMed  Google Scholar 

  36. Stewart, R. C., A. N. Patwa, H. Lusic, J. D. Freedman, M. Wathier, B. D. Snyder, A. Guermazi, and M. W. Grinstaff. Synthesis and preclinical characterization of a cationic iodinated imaging contrast agent (CA4 +) and its use for quantitative computed tomography of ex vivo human hip cartilage. J. Med. Chem. 60:5543–5555, 2017.

    Article  PubMed  CAS  Google Scholar 

  37. Zou, G. Y. Toward using confidence intervals to compare correlations. Psychol. Methods 12:399–413, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Sandra Sefa (B.Sc.) is acknowledged for assistance with the biomechanical measurements. Jaakko Sarin, M.Sc.(Tech) is acknowledged for assistance in sample extraction. Academy of Finland (Projects 269315, 307932), Kuopio University Hospital (VTR 5041746, 5041757, PY210), Instrumentarium Science Foundation (170033) and Doctoral Program in Science, Technology and Computing (SCITECO, University of Eastern Finland) are acknowledged for financial support.

Conflicts of interests

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhisek Bhattarai.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattarai, A., Honkanen, J.T.J., Myller, K.A.H. et al. Quantitative Dual Contrast CT Technique for Evaluation of Articular Cartilage Properties. Ann Biomed Eng 46, 1038–1046 (2018). https://doi.org/10.1007/s10439-018-2013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-2013-y

Keywords

Navigation