Annals of Biomedical Engineering

, Volume 46, Issue 6, pp 888–898 | Cite as

Matrix Stiffness Modulates Mesenchymal Stem Cell Sensitivity to Geometric Asymmetry Signals

  • Maria E. Piroli
  • Ehsan Jabbarzadeh


Human stem cells hold significant potential for the treatment of various diseases. However, their use as a therapy is hampered because of limited understanding of the mechanisms by which they respond to environmental stimuli. Efforts to understand extracellular biophysical cues have demonstrated the critical roles of geometrical and mechanical signals in determining the fate of stem cells. The goal of this study was to explore the interplay between cell polarity and matrix stiffness in stem cell lineage specification. We hypothesize that confining cells to asymmetric extracellular matrix islands will impart polarity at a single-cell level and will interact with mechanical signals to define the lineage of stem cells. To test these hypotheses, we employed microcontact printing to create patterned symmetric and asymmetric hydrogel islands of soft and hard surface stiffness. Human mesenchymal stem cells (hMSCs) were confined to these islands at the single-cell level and given the ability to differentiate along adipogenic or osteogenic routes. Our results demonstrated that cell polarity defines the lineage specification of hMSCs only on islands with low stiffness. Insight gained from this study provides a rational basis for designing stem cell cultures to enhance tissue engineering and regenerative medicine strategies.


Cell polarity Matrix elasticity Micropatterning Mesenchymal stem cells 



Research reported in this publication was supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number AR063338. We would like to thank Dr. Tarek Shazly and Will Torres for assisting us with the use of the Electroforce 3200.


  1. 1.
    Ben-Yair, R., N. Kahane, and C. Kalcheim. Lgn-dependent orientation of cell divisions in the dermomyotome controls lineage segregation into muscle and dermis. Development 138:4155–4166, 2011.CrossRefPubMedGoogle Scholar
  2. 2.
    Chang, Y. C., P. Nalbant, J. Birkenfeld, Z. F. Chang, and G. M. Bokoch. Gef-h1 couples nocodazole-induced microtubule disassembly to cell contractility via rhoa. Mol. Biol. Cell. 19:2147–2153, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Geometric control of cell life and death. Science. 276:1425–1428, 1997.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen, C. S., M. Mrksich, S. Huang, G. M. Whitesides, and D. E. Ingber. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14:356–363, 1998.CrossRefPubMedGoogle Scholar
  5. 5.
    Drubin, D. G., and W. J. Nelson. Origins of cell polarity. Cell. 84:335–344, 1996.CrossRefPubMedGoogle Scholar
  6. 6.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell. 126:677–689, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Guilak, F., D. M. Cohen, B. T. Estes, J. M. Gimble, W. Liedtke, and C. S. Chen. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 5:17–26, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Harris, G. M., M. E. Piroli, and E. Jabbarzadeh. Deconstructing the effects of matrix elasticity and geometry in mesenchymal stem cell lineage commitment. Adv. Funct. Mater. 24:2396–2403, 2014.CrossRefPubMedGoogle Scholar
  9. 9.
    Harris, G. M., T. Shazly, and E. Jabbarzadeh. Deciphering the combinatorial roles of geometric, mechanical, and adhesion cues in regulation of cell spreading. PLoS ONE. 8:e81113, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Horvitz, H. R., and I. Herskowitz. Mechanisms of asymmetric cell division: two bs or not two bs, that is the question. Cell. 68:237–255, 1992.CrossRefPubMedGoogle Scholar
  11. 11.
    Ishizaki, T., M. Uehata, I. Tamechika, J. Keel, K. Nonomura, M. Maekawa, and S. Narumiya. Pharmacological properties of y-27632, a specific inhibitor of rho-associated kinases. Mol. Pharmacol. 57:976–983, 2000.PubMedGoogle Scholar
  12. 12.
    James, A. W. Review of signaling pathways governing msc osteogenic and adipogenic differentiation. Scientifica (Cairo). 684736:2013, 2013.Google Scholar
  13. 13.
    Kamakura, S., M. Nomura, J. Hayase, Y. Iwakiri, A. Nishikimi, R. Takayanagi, Y. Fukui, and H. Sumimoto. The cell polarity protein minsc regulates neutrophil chemotaxis via a noncanonical g protein signaling pathway. Dev. Cell. 26:292–302, 2013.CrossRefPubMedGoogle Scholar
  14. 14.
    Kaushik, R., F. Yu, W. Chia, X. Yang, and S. Bahri. Subcellular localization of lgn during mitosis: evidence for its cortical localization in mitotic cell culture systems and its requirement for normal cell cycle progression. Mol. Biol. Cell. 14:3144–3155, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA. 107:4872–4877, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kilian, K. A., and M. Mrksich. Directing stem cell fate by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. Angew Chem Int Ed Engl. 51:4891–4895, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kimura, K., M. Ito, M. Amano, K. Chihara, Y. Fukata, M. Nakafuku, B. Yamamori, J. Feng, T. Nakano, K. Okawa, A. Iwamatsu, and K. Kaibuchi. Regulation of myosin phosphatase by rho and rho-associated kinase (rho-kinase). Science. 273:245–248, 1996.CrossRefPubMedGoogle Scholar
  18. 18.
    Knoblich, J. A. Mechanisms of asymmetric stem cell division. Cell. 132:583–597, 2008.CrossRefPubMedGoogle Scholar
  19. 19.
    Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nat. Rev. Mol. Cell Biol. 11:849–860, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Konno, D., G. Shioi, A. Shitamukai, A. Mori, H. Kiyonari, T. Miyata, and F. Matsuzaki. Neuroepithelial progenitors undergo lgn-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10:93–101, 2008.CrossRefPubMedGoogle Scholar
  21. 21.
    Krtolica, A., O. Genbacev, C. Escobedo, T. Zdravkovic, A. Nordstrom, D. Vabuena, A. Nath, C. Simon, K. Mostov, and S. J. Fisher. Disruption of apical-basal polarity of human embryonic stem cells enhances hematoendothelial differentiation. Stem Cells. 25:2215–2223, 2007.CrossRefPubMedGoogle Scholar
  22. 22.
    Lechler, T., and E. Fuchs. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature. 437:275–280, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lee, J., A. A. Abdeen, T. H. Huang, and K. A. Kilian. Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. J. Mech. Behav. Biomed. Mater. 38:209–218, 2014.CrossRefPubMedGoogle Scholar
  24. 24.
    Lee, J., A. A. Abdeen, and K. A. Kilian. Rewiring mesenchymal stem cell lineage specification by switching the biophysical microenvironment. Sci. Rep. 4:5188, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lee, M., and V. Vasioukhin. Cell polarity and cancer–cell and tissue polarity as a non-canonical tumor suppressor. J. Cell Sci. 121:1141–1150, 2008.CrossRefPubMedGoogle Scholar
  26. 26.
    Ling, L., V. Nurcombe, and S. M. Cool. Wnt signaling controls the fate of mesenchymal stem cells. Gene. 433:1–7, 2009.CrossRefPubMedGoogle Scholar
  27. 27.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen. Cell shape, cytoskeletal tension, and rhoa regulate stem cell lineage commitment. Dev. Cell. 6:483–495, 2004.CrossRefPubMedGoogle Scholar
  28. 28.
    Mooney, D., L. Hansen, J. Vacanti, R. Langer, S. Farmer, and D. Ingber. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J. Cell. Physiol. 151:497–505, 1992.CrossRefPubMedGoogle Scholar
  29. 29.
    Morrison, S. J., and J. Kimble. Asymmetric and symmetric stem-cell divisions in development and cancer. Nature. 441:1068–1074, 2006.CrossRefPubMedGoogle Scholar
  30. 30.
    Mukherjee, S., J. Kong, and D. J. Brat. Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev. 24:405–416, 2015.CrossRefPubMedGoogle Scholar
  31. 31.
    Nelson, C. M., and C. S. Chen. Cell-cell signaling by direct contact increases cell proliferation via a pi3 k-dependent signal. FEBS Lett. 514:238–242, 2002.CrossRefPubMedGoogle Scholar
  32. 32.
    Peng, R., X. Yao, B. Cao, J. Tang, and J. Ding. The effect of culture conditions on the adipogenic and osteogenic inductions of mesenchymal stem cells on micropatterned surfaces. Biomaterials. 33:6008–6019, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Pham, K., F. Sacirbegovic, and S. M. Russell. Polarized cells, polarized views: asymmetric cell division in hematopoietic cells. Front. Immunol. 5:26, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rowlands, A. S., P. A. George, and J. J. Cooper-White. Directing osteogenic and myogenic differentiation of mscs: interplay of stiffness and adhesive ligand presentation. Am. J. Physiol. Cell Physiol. 295:C1037–C1044, 2008.CrossRefPubMedGoogle Scholar
  35. 35.
    Simons, M., and M. Mlodzik. Planar cell polarity signaling: from fly development to human disease. Annu Rev. Genet. 42:517, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Thery, M. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123:4201–4213, 2010.CrossRefPubMedGoogle Scholar
  37. 37.
    Thery, M., and M. Bornens. Cell shape and cell division. Curr. Opin. Cell Biol. 18:648–657, 2006.CrossRefPubMedGoogle Scholar
  38. 38.
    Thery, M., A. Jimenez-Dalmaroni, V. Racine, M. Bornens, and F. Julicher. Experimental and theoretical study of mitotic spindle orientation. Nature. 447:493–496, 2007.CrossRefPubMedGoogle Scholar
  39. 39.
    Thery, M., V. Racine, M. Piel, A. Pepin, A. Dimitrov, Y. Chen, J. B. Sibarita, and M. Bornens. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl. Acad. Sci. USA. 103:19771–19776, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Vasquez, R. J., B. Howell, A. M. Yvon, P. Wadsworth, and L. Cassimeris. Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro. Mol. Biol. Cell. 8:973–985, 1997.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Walsh, T., H. Shahin, T. Elkan-Miller, M. K. Lee, A. M. Thornton, W. Roeb, A. Abu, S. Rayyan, K. B. Loulus, M.-C. Avraham, and M. Kanaan. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein gpsm2 as the cause of nonsyndromic hearing loss dfnb82. Am. J. Hum. Genet. 87:90–94, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Winer, J. P., P. A. Janmey, M. E. McCormick, and M. Funaki. Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A. 15:147–154, 2009.CrossRefPubMedGoogle Scholar
  43. 43.
    Wodarz, A., and I. Näthke. Cell polarity in development and cancer. Nat. Cell Biol. 9:1016, 2007.CrossRefPubMedGoogle Scholar
  44. 44.
    Wozniak, M. A., and C. S. Chen. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wright, C. E., E. J. Kushner, Q. Du, and V. L. Bautch. Lgn directs interphase endothelial cell behavior via the microtubule network. PLoS One. 10:e0138763, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Yamashita, Y. M., H. Yuan, J. Cheng, and A. J. Hunt. Polarity in stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol. 2:a001313, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Yang, S., K. Ma, Z. Geng, X. Sun, and X. Fu. Oriented cell division: new roles in guiding skin wound repair and regeneration. Biosci Rep. 35:e00280, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Yeaman, C., K. K. Grindstaff, and W. J. Nelson. New perspectives on mechanisms involved in generating epithelial cell polarity. Physiol. Rev. 79:73–98, 1999.CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang, D., and K. A. Kilian. The effect of mesenchymal stem cell shape on the maintenance of multipotency. Biomaterials. 34:3962–3969, 2013.CrossRefPubMedGoogle Scholar
  50. 50.
    Zhong, Y., and B. Ji. Impact of cell shape on cell migration behavior on elastic substrate. Biofabrication. 5:015011, 2013.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Biomedical Engineering ProgramUniversity of South CarolinaColumbiaUSA
  2. 2.Department of Chemical Engineering, Biomedical Engineering ProgramUniversity of South CarolinaColumbiaUSA

Personalised recommendations