Quantifying Anatomic Deformations During Laryngoscopy

  • Xiaotian Wu
  • Joseph A. Paydarfar
  • Ryan J. Halter


For a variety of head and neck cancers, specifically those of the oropharynx, larynx, and hypopharynx, minimally invasive trans-oral approaches have been developed to reduce perioperative and long-term morbidity. However, in trans-oral surgical approaches anatomical deformation due to instrumentation, specifically placement of laryngoscopes and retractors, present a significant challenge for surgeons relying on preoperative imaging to resect tumors to negative margins. Quantifying the deformation due to instrumentation is needed in order to develop predictive models of operative deformation. In order to study this deformation, we used a CT/MR-compatible laryngoscopy system in concert with intraoperative CT imaging. 3D models of preoperative and intraoperative anatomy were generated. Mandible and hyoid displacements as well as tongue deformations were quantified for eight patients undergoing diagnostic laryngoscopy. Across patients, we found on average 1.3 cm of displacement for these anatomic structures due to laryngoscope insertion. On average, the maximum displacement for certain tongue regions exceeded 4 cm. The anatomical deformations quantified here can serve as a reference for describing how the upper aerodigestive tract anatomy changes during instrumentation and may be helpful in developing predictive models of intraoperative upper aerodigestive tract deformation.


Computed tomography (CT) Trans-oral surgery (TOS) CT/MR-compatible laryngoscopy system 



Computed tomography


Magnetic resonance


Magnetic resonance imaging


Trans-oral laser microsurgery


Trans-oral robotic surgery


Trans-oral surgery


Anatomical coordinate system defined by the Frankfurt plane5 (auriculo-orbital plane), the mid-sagittal plane, and the vertical porion plane


Iterative closest point algorithm


Singular value decomposition



The authors of the paper would like to thank Michael Pearl and Michaela Whitty for their assistance with the study in the operating room, Ethan Murphy for mathematics consultation, Jiyoo Chang for image segmentation work, and Thayer and DHMC staff for providing technical expertise and use of facilities. This study was supported by the Dartmouth SYNERGY Clinical and Translational Science Institute (UL1TR001096) from the National Center for Advancing Translational Sciences of the National Institutes of Health.


  1. 1.
    Besl, P. J., and N. D. McKay. A method for registration of 3D-shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14:239–256, 1992.CrossRefGoogle Scholar
  2. 2.
    Bhatia, K. S. S., E. H. Y. Yuen, C. C. M. Cho, C. S. L. Tong, Y. Y. P. Lee, and A. T. Ahuja. A pilot study evaluating real-time shear wave ultrasound elastography of miscellaneous non-nodal neck masses in a routine head and neck ultrasound clinic. Ultrasound. Med. Biol. 38:933–942, 2012.CrossRefPubMedGoogle Scholar
  3. 3.
    Bookstein, F. L. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11:567–585, 1989.CrossRefGoogle Scholar
  4. 4.
    Chaturvedi, A. K., W. F. Anderson, J. Lortet-Tieulent, M. Paula Curado, J. Ferlay, S. Franceschi, P. S. Rosenberg, F. Bray, and M. L. Gillison. Worldwide trends in incidence rates for oral cavity and oropharyngeal cancers. J. Clin. Oncol. 31:4550–4559, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cheng, Y., W. Kheng Leow, and T. Chye Lim. Automatic identification of Frankfurt plane and mid-sagittal plane of skull. Proc. IEEE Work. Appl. Comput. Vis. 233–238, 2012.  https://doi.org/10.1109/wacv.2012.6162994.
  6. 6.
    Chouly, F., A. Van Hirtum, P.-Y. Lagrée, X. Pelorson, and Y. Payan. Modelling the human pharyngeal airway: validation of numerical simulations using in vitro experiments. Med. Biol. Eng. Comput. 47:49–58, 2009.CrossRefPubMedGoogle Scholar
  7. 7.
    Chow, L. C., S. W. Kwan, E. W. Olcott, and G. Sommer. Split-bolus MDCT urography with synchronous nephrographic and excretory phase enhancement. Am. J. Roentgenol. 189:314–322, 2007.CrossRefGoogle Scholar
  8. 8.
    Citardi, M. J., and P. S. Batra. Image-guided sinus surgery: current concepts and technology. Otolaryngol. Clin. N. Am. 38:439–452, 2005.CrossRefGoogle Scholar
  9. 9.
    Du, Q., V. Faber, and M. Gunzburger. Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41:637–676, 1999.CrossRefGoogle Scholar
  10. 10.
    Farag, A., M. Rosen, and J. Evans. Surgical techniques for sinonasal malignancies. Neurosurg. Clin. N. Am. 26:403–412, 2015.CrossRefPubMedGoogle Scholar
  11. 11.
    Gayar, O. H., J. J. Ruterbusch, M. Elshaikh, M. Cote, T. Ghanem, F. Hall, and F. Siddiqui. Oropharyngeal carcinoma in young adults: an alarming national trend. Otolaryngol. Neck Surg. 150:594–601, 2014.CrossRefGoogle Scholar
  12. 12.
    Haberland, N., K. Ebmeier, R. Hliscs, J. Grnewald, J. Silbermann, J. Steenbeck, H. Nowak, and R. Kalff. Neuronavigation in surgery of intracranial and spinal tumors. J. Cancer Res. Clin. Oncol. 126:529–541, 2000.CrossRefPubMedGoogle Scholar
  13. 13.
    Haralick, R. M., H. Joo, C. N. Lee, X. Zhuang, V. G. Vaidya, and M. Bae Kim. Pose estimation from corresponding point data. IEEE Trans. Syst. Man Cybern. 19:1426–1446, 1989.CrossRefGoogle Scholar
  14. 14.
    Hartigan, J. A., and M. A. Wong. Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. 28:100, 1979.CrossRefGoogle Scholar
  15. 15.
    Haughey, B. H., M. L. Hinni, J. R. Salassa, R. E. Hayden, D. G. Grant, J. T. Rich, S. Milov, J. S. Lewis, and M. Krishna. Transoral laser microsurgery as primary treatment for advanced-stage oropharyngeal cancer: a United States Multicenter Study. Head Neck 1–12, 2011.  https://doi.org/10.1002/hed.21669.
  16. 16.
    Herrell, S. D., R. L. Galloway, and L.-M. Su. Image-guided robotic surgery. Curr. Opin. Urol. 22:47–54, 2012.CrossRefPubMedGoogle Scholar
  17. 17.
    Herrell, S. D., D. M. Kwartowitz, P. M. Milhoua, and R. L. Galloway. Toward image guided robotic surgery: system validation. J. Urol. 181:783–790, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Higgins, K. M., M. D. Shah, M. J. Ogaick, and D. Enepekides. Treatment of early-stage glottic cancer: meta-analysis comparison of laser excision versus radiotherapy. J. Otolaryngol. Head Neck Surg. 38:603–612, 2009.PubMedGoogle Scholar
  19. 19.
    Holsinger, F. C., A. D. Sweeney, K. Jantharapattana, A. Salem, R. S. Weber, W. Y. Chung, C. M. Lewis, and D. G. Grant. The emergence of endoscopic head and neck surgery. Curr. Oncol. Rep. 12:216–222, 2010.CrossRefPubMedGoogle Scholar
  20. 20.
    Kochar, G. D., A. Chakranarayan, S. Kohli, V. S. Kohli, V. Khanna, B. Jayan, S. S. Chopra, and M. Verma. Effect of surgical mandibular advancement on pharyngeal airway dimensions: a three-dimensional computed tomography study. Int. J. Oral Maxillofac. Surg. 45:553–559, 2016.CrossRefPubMedGoogle Scholar
  21. 21.
    Liu, W. P., S. Reaugamornrat, J. M. Sorger, J. H. Siewerdsen, R. H. Taylor, and J. D. Richmon. Intraoperative image-guided transoral robotic surgery: pre-clinical studies. Int. J. Med. Robot. Comput. Assist. Surg. 11:256–267, 2015.CrossRefGoogle Scholar
  22. 22.
    Lloyd, J. E., I. Stavness, and S. Fels. ArtiSynth: a fast interactive biomechanical modeling toolkit combining multibody and finite element simulation. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery, edited by Y. Payan. Berlin: Springer, 2012, pp. 355–394.CrossRefGoogle Scholar
  23. 23.
    Mandal, R., U. Duvvuri, R. L. Ferris, T. M. Kaffenberger, G. W. Choby, and S. Kim. Analysis of post-transoral robotic-assisted surgery hemorrhage: frequency, outcomes, and prevention. Head Neck 38(Suppl 1):E776–E782, 2016.CrossRefPubMedGoogle Scholar
  24. 24.
    Myronenko, A., and X. Song. On the closed-form solution of the rotation matrix arising in computer vision problems. arxiv preprint, 2009, pp. 1–8. http://arxiv.org/abs/0904.1613.
  25. 25.
    Paydarfar, J. A., X. Wu, and R. J. Halter. MRI- and CT-compatible polymer laryngoscope. Otolaryngol. Neck Surg. 155:364–366, 2016.CrossRefGoogle Scholar
  26. 26.
    Pervez, A., K. Ahmed, S. Thompson, O. Elhage, M. S. Khan, and P. Dasgupta. Image guided robotic surgery: current evidence for effectiveness in urology. Arch. Ital. Urol. Androl. 86:245–248, 2014.CrossRefPubMedGoogle Scholar
  27. 27.
    Reaungamornrat, S., W. P. Liu, A. S. Wang, Y. Otake, S. Nithiananthan, A. Uneri, S. Schafer, E. Tryggestad, J. Richmon, J. M. Sorger, J. H. Siewerdsen, and R. H. Taylor. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery. Phys. Med. Biol. 58:4951–4979, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rodrigues, M. A., D. Gillies, and P. Charters. A biomechanical model of the upper airways for simulating laryngoscopy. Comput. Methods Biomech. Biomed. Eng. 4(2):127–148, 2001.CrossRefGoogle Scholar
  29. 29.
    Rosenthal, E. L., J. M. Warram, K. I. Bland, and K. R. Zinn. The status of contemporary image-guided modalities in oncologic surgery. Ann. Surg. 261:46–55, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rucker, D., Y. Wu, L. Clements, J. Ondrake, T. Pheiffer, A. Simpson, W. Jarnagin, and M. Miga. A mechanics-based nonrigid registration method for liver surgery using sparse intraoperative data. IEEE Trans. Med. Imaging 33:1–12, 2013.Google Scholar
  31. 31.
    Sharma, G. K., A. Chin Loy, E. Su, J. Jing, Z. Chen, B. J.-F. Wong, and S. Verma. Quantitative evaluation of adult subglottic stenosis using intraoperative long-range optical coherence tomography. Ann. Otol. Rhinol. Laryngol., 2016. https://doi.org/10.1177/0003489416655353.
  32. 32.
    Siegel, R., K. Miller, and A. Jemal. Cancer statistics, 2017. CA Cancer J. Clin. 67:7–30, 2017.CrossRefPubMedGoogle Scholar
  33. 33.
    Simpson, A. L., and T. P. Kingham. Current evidence in image-guided liver surgery. J. Gastrointest. Surg. 20:1265–1269, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Stella, F., G. Dolci, A. Dell’Amore, G. Badiali, M. De Matteis, N. Asadi, C. Marchetti, and A. Bini. Three-dimensional surgical simulation-guided navigation in thoracic surgery: a new approach to improve results in chest wall resection and reconstruction for malignant diseases. Interact. Cardiovasc. Thorac. Surg. 18:7–12, 2014.CrossRefPubMedGoogle Scholar
  35. 35.
    Volgger, V., G. K. Sharma, J. C. Jing, Y.-S. A. Peaks, A. C. Loy, F. Lazarow, A. Wang, Y. Qu, E. Su, Z. Chen, G. S. Ahuja, and B. J.-F. Wong. Long-range Fourier domain optical coherence tomography of the pediatric subglottis. Int. J. Pediatr. Otorhinolaryngol. 79:119–126, 2015.CrossRefPubMedGoogle Scholar
  36. 36.
    Zevallos, J. P., N. Mitra, and S. Swisher-McClure. Patterns of care and perioperative outcomes in transoral endoscopic surgery for oropharyngeal squamous cell carcinoma. Head Neck 38:402–409, 2016.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Thayer School of Engineering at Dartmouth CollegeHanoverUSA
  2. 2.Geisel School of Medicine at Dartmouth CollegeHanoverUSA
  3. 3.Dartmouth-Hitchcock Medical CenterLebanonUSA

Personalised recommendations